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Abstract— There is a growing need in robotics for real-time 

optimal planning and control, driven by the advent new 

technologies like autonomous vehicles, legged robot locomotion, 

object manipulation, CAD/CAM, computer animation, and 

surgical robots. But even at the current state-of-the-art, global 

optimization is generally too computationally expensive for real-

time use. The status quo appears unsuitable looking ahead to the 

future, which will require addressing progressively higher 

dimensional systems, faster response rates, longer time horizons, 

large and detailed environments, and problems with uncertainty. 

I propose that a motion library approach has the potential to 

address these upcoming needs. The idea is to first precompute a 

large library of motion primitives on a set of representative 

training environments. The robot will then retrieve primitives 

online to solve novel problems. Given enough training data and 

perfect recall, performance is limited only by the retrieval cost. 

The major challenge to address is scale: how many primitives are 

needed to generalize across all environments and tasks of 

interest, and how can tools for precomputation and retrieval 

scale up to thousands or millions of primitives? In this paper, I 

present a preliminary roadmap for motion library research that 

will help move toward a “Google” for robot motions. 
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I.  INTRODUCTION  

For decades robotics has had to cope with the fact that 
global optimization is painfully slow, even though although 
local optimization and solving for feasible suboptimal solutions 
are generally fast. Moore’s law can no longer be relied upon to 
deliver better performance; although memory cost and storage 
density continues to improve, CPU speeds and energy costs are 
starting to plateau (arguably serial performance has already 
plateaued). The implications are pervasive. Whether the object 
being optimized is a path, a trajectory, a feedback control 
policy, a grasp, a geometric quantity, etc., a great deal of 
human effort must be invested to engineer the environment or 
devise good heuristics (e.g., initial guesses for local optimizers) 
to calculate high-quality behaviors. As a result, developing 
intelligent behavior is time-consuming, even in controlled lab 
settings.  

Can robots automatically learn motion strategies and when 
to use them? The question of “when to use a motion” is a major 
challenge, because it requires mapping the space of problems 
(i.e., initial conditions, tasks, and environments) to the space of 
optimal motions. In the worst case, this mapping is intractably 
complex, but it may be the case that the map can be tractably 
approximated. For example, the empirical distribution of 
problems might be approximated by a finite sample, and that 
problem features are statistically highly correlated with 

optimized motions. If the world obeys such a structure, the 
following motion library approach may be useful (Figure 1): 

1. Precompute a huge number of problem/optimal 
motion pairs (motion primitives) and store them in a 
database (a motion library). Problems will be generated 
from a set of representative training environments, or 
from perceptual inputs gathered offline. 

2. Online, the robot solves novel problems by retrieving 
appropriate primitives from the library according to a 
problem similarity metric, and adapting them.  (More 
complex forms of adaptation might compose multiple 
primitives together in sequence through high-level 
planning, or by blending) 

If the motion library were sufficiently rich and retrieval 
were sufficiently fast, the benefits to such a scheme would be 
clear: robots would respond faster, because extensive 
optimization on-line would be avoided; robots would be able to 
execute unintuitive behaviors at their performance limits, 
because optimization is not limited to an engineer’s 
imagination; and robots would be more capable, because an 
essentially infinite number of problem variations can be 
explored in simulation. Skills will no longer need to be 

 
Figure 1. An illustration of the motion library approach. 



 

 

painstakingly-crafted in the lab; an engineer will simply need 
to provide additional test environments and wait for a modest 
amount of precomputation time before a new skill emerges 
automatically. 

This paper presents a vision for the new motion library 
framework and discusses promising research directions for 
making it feasible. It remains unresolved whether the approach 
is computationally feasible, whether libraries can be 
sufficiently rich to cover all problems of interest, and whether 
retrieval can be made sufficiently fast. But we observe broader 
computing trends that give us reason to be optimistic. First, 
library precomputation is trivially parallelizable, and costs are 
rapidly dropping as vast amounts of computing resources are 
becoming readily available via high-performance clusters and 
cloud computing. I argue that with the right computing 
infrastructure, it would be orders of magnitude cheaper and 
faster to calculate robot behaviors automatically than to employ 
human labor to develop them. Second, information retrieval 
techniques for documents, images, and 3D objects can access 
relevant queries from databases containing billions of entries in 
a fraction of a second. Extending them to handle problems and 
motions will require a great deal of new work, but the 
challenge is by no means insurmountable.  

II. BACKGROUND AND PRIOR WORK 

The idea of robot learning is appealing, and has been 
studied in past work in many forms such as reinforcement 
learning [1], iterative learning control [2], and dynamic 
movement primitives [3]. However, knowing “when to use” a 
motion strategy is still a challenge, because rather than learning 
in the space of states, it requires learning in the space of 
problems, which is infinite-dimensional. Hence, learning from 
physical experience or manual teaching typically fails to 
provide sufficiently large training sets to select appropriate 
strategies.  

Motion libraries have been studied most significantly in the 
virtual character animation community. Several techniques 
exist for generating novel motions from high-quality human 
motion clips, either by sequencing several motions [4,5] or 
adapting motions to new characters [6,7]. It is also possible to 
learn a probability distribution of natural-looking poses from 
human motion capture data, and to bias the solution of 
optimization problems toward those poses [8, 9]. The successes 
of this approach suggest that many complex, multi-step 
motions can be quickly composed of a relatively small number 
of simple, reusable subsegments (e.g., stepping motions). This 
paper outlines a similar approach, but one that does not 
presuppose the existence of human motion datasets. It also puts 
a higher priority on physical feasibility through the use of 
constrained global optimization.  

In robotics, past efforts on optimization-based motion 
learning and adaptation include [10,11,12,13,14]. In general, 
this research has suggested that a small amount of online 
optimization to the novel problem (adaptation) makes it less 
important to learn optimal motions precisely (Figure 2).  As a 
result they are able to use manageably small motion libraries 
(dozens or hundreds of primitives) to address novel problems. 
This paper considers the novel research issues that will need to 
be tackled to scale up to massive numbers of primitives. 

III. MOTION LIBRARY APPROACH 

This section describes a high level overview of the 

approach and why it is likely to be economically viable. 

A. The Motion Library Workflow 

Unlike the current state of practice of dedicating tens or 
hundreds of thousands of man-hours toward engineering robot 
behaviors, the motion library approach considers the following 
workflow: 

 A robot model, a set of representative training 
environments, and a task generator are sent to a 
computing server (e.g., the cloud). 

 The server precomputes a massive motion library, 
including similarity metrics and data structures for 
optimized retrieval of appropriate motion primitives. 

 Either (A) the motion library is transferred to physical 
robots for local retrieval, or (B) the robots query the 
motion library remotely from the server. 

 
(a) Stair step planned entirely from scratch. 

  
(b) Primitive adaptation leads to a more natural looking motion. 

 
(c) Adaptation planning can produce high quality paths in less 

time than planning from scratch (lower objective values are 

better). 

 

Figure 2. Adaptation planning for a humanoid robot 

(reprinted from [14]). 



 

 

Periodically, the server may continue to expand the motion 
library to incrementally improve the robots’ performance.  
Robots may provide feedback about their deployed 
environments, which helps the motion library adapt over time. 

B. Mathematical Formulation 

The mathematical formulation of the motion library 

approach is highly general and straightforward [10]. If p is a 

problem specification, x is a candidate motion, and f(x;p) is a 

quality metric (higher is better), we wish to learn an 

approximation of the map from problems to optimal motions: 

 g(p)   x* ≡ arg maxx f(x;p). (1) 

A motion library is a set of N problem/motion pairs 

(p[1],x[1]),…,(p[N],x[N]). Problems include environmental 

variables (which are typically complex, e.g., 3D maps) and 

task variables (e.g., start and goal configuration).To produce 

the large amounts of training data needed to make learning 

work, a relatively small number of manually-provided training 

environments is combined with a task generator, which  

samples task variables at random according to a given task 

distribution.  

Given a problem similarity metric d, we can define the 

primitive retrieval function: 

 retrieve(p) = x[index(p)] (2) 

where index(p) = arg mink d(p[k],p) is the index of the nearest 

problem to p. Let us put aside for the moment the issue of 

defining problem similarity; this issue will be revisited in 

Section IV. 

Now, the final adaptation layer is represented via a map 

adapt(x,p) from a “guess” x to a solution of problem p. In the 

simplest unconstrained case, adapt(x,p)=x, but more typically 

the constraints in p will need to be taken into account. The 

final representation of g(p) is therefore 

 g(p) =adapt(retrieve(p),p). (3) 

This can be considered a form of nonparametric estimator of 

the ideal g.  

The designer of a motion library must carefully consider 

the time-quality tradeoff when designing the library size, 

adapt routine, and retrieve routine. With respect to solution 

quality, the method is expected to perform better with N large 

and strong adaptation, i.e., is likely to map even poor guesses 

to high quality solutions. With respect to time, this system will 

perform better when N is low or fast indexing structures help 

compute (2) quickly, and weak adaptation. 

C. The Economic Calculus 

Developing planning and control strategies for robots is 
labor-intensive. Consider that in 2009, Willow Garage 
developed behaviors for the PR2 household robot to open doors 
and plug itself in for recharging batteries [15]. A human labor 
cost from $50,000-400,000 per robot behavior is estimated 
given the following assumptions: 

 1-4 engineers at 6-12 months development time per 
behavior 

 $100,000 annual salary (reasonable for software 
engineers in Silicon Valley). 

On the other hand, with Amazon EC2’s cloud computing 
service, a machine can be rented on-demand for $0.06/hour 
[16].  So, $100,000 buys 1.6 million hours of computation, 
taking approximately one month of work from 4,000 machines. 
A motion library approach could compute 70 behaviors for the 
same cost as an engineer’s yearly salary, and at a much faster 
rate, given the (very rough) assumptions: 

 One robust behavior consists of 1,000 optimized 
motions (e.g., a motion library of size 1,000 
successfully solves all problem variations expected to 
be solved by the behavior) 

 A single machine optimizes 1 motion / day. 

Granted, these estimates should be taken with a grain of 
salt. The conversion rate between a “robust behavior” and 
optimized motion is completely unclear, and the motion 
optimization speed depends on the complexity of the robot and 
environment.  Furthermore, human labor will still be needed to 
configure the precomputations by providing test problems, 
simulations, and problem features, and to verify and test 
behaviors on the robot. Nevertheless, these calculations suggest 
that motion libraries have the potential to rapidly accelerate the 
development of robot behaviors without increasing costs. 

IV. NEW ENABLING TECHNOLOGIES 

A good motion library will exhibit fast retrieval and wide 

applicability while relying only on weak adaptation, because 

online costs are minimized while maintaining high solution 

quality. Tools from data mining and information retrieval may 

be useful to learn good libraries from a huge number of raw 

input motions. 

A. Clustering, Problem Features, and Indexing 

First, clustering and segmentation may be used to reduce 

a huge motion space N into a manageable number of motion 

primitives. Second, due to the complexity of 3D environments, 

problems will likely need to be indexed by a feature vector 

rather than a direct representation. It is unclear which of a 

large number of features may be most predictive of accurate 

retrievals, but unsupervised feature selection techniques may 

be useful. Third, approximate nearest neighbors or locality 

sensitive hashing techniques can be used to achieve sub-linear 

lookup times even with high N.  

B. Adaptation-Sensitive Problem Similarity Metrics 

Let us now revisit the issue of problem similarity metrics. 

Suppose for sake of argument that we could test the adaptation 

quality for every primitive. Then, we would see that the 

optimal retrieval index index*(p) is: 

 index*(p) = arg maxk f(adapt(x[k],p),p). (4) 



 

 

Hence, an optimal similarity metric d will be one for which 

arg mink d(p[k],p)=index*(p) holds over all problems. Such a 

metric is adaptation-sensitive because it depends directly on 

the adaptation process. Of course, we cannot determine 

index*(p) without applying adapt to all primitives, which 

would largely defeat the purpose of a motion library. 

However, we can learn a problem-space metric that 

approximates d(p[k],p)  -f(adapt(x[k],p),p). Such a Quality-

of Adaptation (QoA) metric would result in a close 

approximation index(p)  index*(p), and hence, high quality 

adaptations.  It is also a simple matter to consider 

computational costs in the measure of adaptation quality. To 

train a QoA metric, we may select a sample of source/target 

(s,t) pairs from the motion library and compute training 

examples d(p[s],p[t]) = -f(adapt(x[s],p[t]),p[t])). Any 

supervised method then can be used to learn the function 

d(p,p'). 

V. CONCLUSION AND VISION FOR FUTURE WORK 

This paper outlined a vision for generating and using 
motion libraries of unprecedented scale to solve the real-time 
global optimization problems that are ubiquitous in robotics. 
The approach is outlined in a mathematically sound 
framework, and is argued to be economically viable compared 
to human labor in generating robust robot behaviors. 

Future research should address whether a library can 
represent repeatable motion patterns: 

1. How large must a motion library be to tackle 
complex problems?  Existing techniques can handle 
dozens of primitives, but new retrieval techniques are 
needed to scale to thousands or millions.  If billions 
or trillions of motions are needed, then the approach 
is likely impractical. 

2. How can common motifs (steering maneuvers, 
footsteps, grasps) be clustered and segmented to be 
used as primitives in the vast amounts of generated 
data? 

And how to implement primitive retrieval: 

3. What problem features and indexing structures yield 
fast and effective primitive retrieval?  Image retrieval 
techniques scale to millions of images due to decades 
of research in high-quality image features (e.g., 
SIFT, HOG) and approximate nearest neighbors 
techniques, while research on robot control problem 
retrieval is practically nonexistent.   

4. How does the power of the adaptation routine affect 
library applicability and responsiveness? Stronger 
adaptation lessens the need for larger libraries, at the 
expense of more online computation. 

This paper outlined a number of promising approaches for 
addressing these research challenges, and sketched out the idea 
of learning adaptation-sensitive problem similarity metrics. 

Outside of the scope of this paper, but still important for the 
success of a motion library method, are research directions in 
closing the loop with high-level planning and perception: 

5. How can planners efficiently compose long-term, 
high-level behavior out of primitives, particularly 
where multiple primitives appear equally favorable to 
achieve a goal? 

6. How should the robot incorporate sensing feedback 
to compensate for simulation errors? 

Should this effort be successful in overcoming the intractability 
of global optimization, it could usher in dramatic advances in 
real-time control of complex tasks, such as those that are 
typical in household, industrial, and space robots. 
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