

Large Motion Libraries: Toward a “Google” for

Robot Motions
Kris Hauser, School of Informatics and Computing, Indiana University at Bloomington

hauserk@indiana.edu

Abstract— There is a growing need in robotics for real-time

optimal planning and control, driven by the advent new

technologies like autonomous vehicles, legged robot locomotion,

object manipulation, CAD/CAM, computer animation, and

surgical robots. But even at the current state-of-the-art, global

optimization is generally too computationally expensive for real-

time use. The status quo appears unsuitable looking ahead to the

future, which will require addressing progressively higher

dimensional systems, faster response rates, longer time horizons,

large and detailed environments, and problems with uncertainty.

I propose that a motion library approach has the potential to

address these upcoming needs. The idea is to first precompute a

large library of motion primitives on a set of representative

training environments. The robot will then retrieve primitives

online to solve novel problems. Given enough training data and

perfect recall, performance is limited only by the retrieval cost.

The major challenge to address is scale: how many primitives are

needed to generalize across all environments and tasks of

interest, and how can tools for precomputation and retrieval

scale up to thousands or millions of primitives? In this paper, I

present a preliminary roadmap for motion library research that

will help move toward a “Google” for robot motions.

Keywords: robotics; optimization; motion planning; machine

learning; information retrieval

I. INTRODUCTION

For decades robotics has had to cope with the fact that
global optimization is painfully slow, even though although
local optimization and solving for feasible suboptimal solutions
are generally fast. Moore’s law can no longer be relied upon to
deliver better performance; although memory cost and storage
density continues to improve, CPU speeds and energy costs are
starting to plateau (arguably serial performance has already
plateaued). The implications are pervasive. Whether the object
being optimized is a path, a trajectory, a feedback control
policy, a grasp, a geometric quantity, etc., a great deal of
human effort must be invested to engineer the environment or
devise good heuristics (e.g., initial guesses for local optimizers)
to calculate high-quality behaviors. As a result, developing
intelligent behavior is time-consuming, even in controlled lab
settings.

Can robots automatically learn motion strategies and when
to use them? The question of “when to use a motion” is a major
challenge, because it requires mapping the space of problems
(i.e., initial conditions, tasks, and environments) to the space of
optimal motions. In the worst case, this mapping is intractably
complex, but it may be the case that the map can be tractably
approximated. For example, the empirical distribution of
problems might be approximated by a finite sample, and that
problem features are statistically highly correlated with

optimized motions. If the world obeys such a structure, the
following motion library approach may be useful (Figure 1):

1. Precompute a huge number of problem/optimal
motion pairs (motion primitives) and store them in a
database (a motion library). Problems will be generated
from a set of representative training environments, or
from perceptual inputs gathered offline.

2. Online, the robot solves novel problems by retrieving
appropriate primitives from the library according to a
problem similarity metric, and adapting them. (More
complex forms of adaptation might compose multiple
primitives together in sequence through high-level
planning, or by blending)

If the motion library were sufficiently rich and retrieval
were sufficiently fast, the benefits to such a scheme would be
clear: robots would respond faster, because extensive
optimization on-line would be avoided; robots would be able to
execute unintuitive behaviors at their performance limits,
because optimization is not limited to an engineer’s
imagination; and robots would be more capable, because an
essentially infinite number of problem variations can be
explored in simulation. Skills will no longer need to be

Figure 1. An illustration of the motion library approach.

painstakingly-crafted in the lab; an engineer will simply need
to provide additional test environments and wait for a modest
amount of precomputation time before a new skill emerges
automatically.

This paper presents a vision for the new motion library
framework and discusses promising research directions for
making it feasible. It remains unresolved whether the approach
is computationally feasible, whether libraries can be
sufficiently rich to cover all problems of interest, and whether
retrieval can be made sufficiently fast. But we observe broader
computing trends that give us reason to be optimistic. First,
library precomputation is trivially parallelizable, and costs are
rapidly dropping as vast amounts of computing resources are
becoming readily available via high-performance clusters and
cloud computing. I argue that with the right computing
infrastructure, it would be orders of magnitude cheaper and
faster to calculate robot behaviors automatically than to employ
human labor to develop them. Second, information retrieval
techniques for documents, images, and 3D objects can access
relevant queries from databases containing billions of entries in
a fraction of a second. Extending them to handle problems and
motions will require a great deal of new work, but the
challenge is by no means insurmountable.

II. BACKGROUND AND PRIOR WORK

The idea of robot learning is appealing, and has been
studied in past work in many forms such as reinforcement
learning [1], iterative learning control [2], and dynamic
movement primitives [3]. However, knowing “when to use” a
motion strategy is still a challenge, because rather than learning
in the space of states, it requires learning in the space of
problems, which is infinite-dimensional. Hence, learning from
physical experience or manual teaching typically fails to
provide sufficiently large training sets to select appropriate
strategies.

Motion libraries have been studied most significantly in the
virtual character animation community. Several techniques
exist for generating novel motions from high-quality human
motion clips, either by sequencing several motions [4,5] or
adapting motions to new characters [6,7]. It is also possible to
learn a probability distribution of natural-looking poses from
human motion capture data, and to bias the solution of
optimization problems toward those poses [8, 9]. The successes
of this approach suggest that many complex, multi-step
motions can be quickly composed of a relatively small number
of simple, reusable subsegments (e.g., stepping motions). This
paper outlines a similar approach, but one that does not
presuppose the existence of human motion datasets. It also puts
a higher priority on physical feasibility through the use of
constrained global optimization.

In robotics, past efforts on optimization-based motion
learning and adaptation include [10,11,12,13,14]. In general,
this research has suggested that a small amount of online
optimization to the novel problem (adaptation) makes it less
important to learn optimal motions precisely (Figure 2). As a
result they are able to use manageably small motion libraries
(dozens or hundreds of primitives) to address novel problems.
This paper considers the novel research issues that will need to
be tackled to scale up to massive numbers of primitives.

III. MOTION LIBRARY APPROACH

This section describes a high level overview of the

approach and why it is likely to be economically viable.

A. The Motion Library Workflow

Unlike the current state of practice of dedicating tens or
hundreds of thousands of man-hours toward engineering robot
behaviors, the motion library approach considers the following
workflow:

 A robot model, a set of representative training
environments, and a task generator are sent to a
computing server (e.g., the cloud).

 The server precomputes a massive motion library,
including similarity metrics and data structures for
optimized retrieval of appropriate motion primitives.

 Either (A) the motion library is transferred to physical
robots for local retrieval, or (B) the robots query the
motion library remotely from the server.

(a) Stair step planned entirely from scratch.

(b) Primitive adaptation leads to a more natural looking motion.

(c) Adaptation planning can produce high quality paths in less

time than planning from scratch (lower objective values are

better).

Figure 2. Adaptation planning for a humanoid robot

(reprinted from [14]).

Periodically, the server may continue to expand the motion
library to incrementally improve the robots’ performance.
Robots may provide feedback about their deployed
environments, which helps the motion library adapt over time.

B. Mathematical Formulation

The mathematical formulation of the motion library

approach is highly general and straightforward [10]. If p is a

problem specification, x is a candidate motion, and f(x;p) is a

quality metric (higher is better), we wish to learn an

approximation of the map from problems to optimal motions:

 g(p) x* ≡ arg maxx f(x;p). (1)

A motion library is a set of N problem/motion pairs

(p[1],x[1]),…,(p[N],x[N]). Problems include environmental

variables (which are typically complex, e.g., 3D maps) and

task variables (e.g., start and goal configuration).To produce

the large amounts of training data needed to make learning

work, a relatively small number of manually-provided training

environments is combined with a task generator, which

samples task variables at random according to a given task

distribution.

Given a problem similarity metric d, we can define the

primitive retrieval function:

 retrieve(p) = x[index(p)] (2)

where index(p) = arg mink d(p[k],p) is the index of the nearest

problem to p. Let us put aside for the moment the issue of

defining problem similarity; this issue will be revisited in

Section IV.

Now, the final adaptation layer is represented via a map

adapt(x,p) from a “guess” x to a solution of problem p. In the

simplest unconstrained case, adapt(x,p)=x, but more typically

the constraints in p will need to be taken into account. The

final representation of g(p) is therefore

 g(p) =adapt(retrieve(p),p). (3)

This can be considered a form of nonparametric estimator of

the ideal g.

The designer of a motion library must carefully consider

the time-quality tradeoff when designing the library size,

adapt routine, and retrieve routine. With respect to solution

quality, the method is expected to perform better with N large

and strong adaptation, i.e., is likely to map even poor guesses

to high quality solutions. With respect to time, this system will

perform better when N is low or fast indexing structures help

compute (2) quickly, and weak adaptation.

C. The Economic Calculus

Developing planning and control strategies for robots is
labor-intensive. Consider that in 2009, Willow Garage
developed behaviors for the PR2 household robot to open doors
and plug itself in for recharging batteries [15]. A human labor
cost from $50,000-400,000 per robot behavior is estimated
given the following assumptions:

 1-4 engineers at 6-12 months development time per
behavior

 $100,000 annual salary (reasonable for software
engineers in Silicon Valley).

On the other hand, with Amazon EC2’s cloud computing
service, a machine can be rented on-demand for $0.06/hour
[16]. So, $100,000 buys 1.6 million hours of computation,
taking approximately one month of work from 4,000 machines.
A motion library approach could compute 70 behaviors for the
same cost as an engineer’s yearly salary, and at a much faster
rate, given the (very rough) assumptions:

 One robust behavior consists of 1,000 optimized
motions (e.g., a motion library of size 1,000
successfully solves all problem variations expected to
be solved by the behavior)

 A single machine optimizes 1 motion / day.

Granted, these estimates should be taken with a grain of
salt. The conversion rate between a “robust behavior” and
optimized motion is completely unclear, and the motion
optimization speed depends on the complexity of the robot and
environment. Furthermore, human labor will still be needed to
configure the precomputations by providing test problems,
simulations, and problem features, and to verify and test
behaviors on the robot. Nevertheless, these calculations suggest
that motion libraries have the potential to rapidly accelerate the
development of robot behaviors without increasing costs.

IV. NEW ENABLING TECHNOLOGIES

A good motion library will exhibit fast retrieval and wide

applicability while relying only on weak adaptation, because

online costs are minimized while maintaining high solution

quality. Tools from data mining and information retrieval may

be useful to learn good libraries from a huge number of raw

input motions.

A. Clustering, Problem Features, and Indexing

First, clustering and segmentation may be used to reduce

a huge motion space N into a manageable number of motion

primitives. Second, due to the complexity of 3D environments,

problems will likely need to be indexed by a feature vector

rather than a direct representation. It is unclear which of a

large number of features may be most predictive of accurate

retrievals, but unsupervised feature selection techniques may

be useful. Third, approximate nearest neighbors or locality

sensitive hashing techniques can be used to achieve sub-linear

lookup times even with high N.

B. Adaptation-Sensitive Problem Similarity Metrics

Let us now revisit the issue of problem similarity metrics.

Suppose for sake of argument that we could test the adaptation

quality for every primitive. Then, we would see that the

optimal retrieval index index*(p) is:

 index*(p) = arg maxk f(adapt(x[k],p),p). (4)

Hence, an optimal similarity metric d will be one for which

arg mink d(p[k],p)=index*(p) holds over all problems. Such a

metric is adaptation-sensitive because it depends directly on

the adaptation process. Of course, we cannot determine

index*(p) without applying adapt to all primitives, which

would largely defeat the purpose of a motion library.

However, we can learn a problem-space metric that

approximates d(p[k],p) -f(adapt(x[k],p),p). Such a Quality-

of Adaptation (QoA) metric would result in a close

approximation index(p) index*(p), and hence, high quality

adaptations. It is also a simple matter to consider

computational costs in the measure of adaptation quality. To

train a QoA metric, we may select a sample of source/target

(s,t) pairs from the motion library and compute training

examples d(p[s],p[t]) = -f(adapt(x[s],p[t]),p[t])). Any

supervised method then can be used to learn the function

d(p,p').

V. CONCLUSION AND VISION FOR FUTURE WORK

This paper outlined a vision for generating and using
motion libraries of unprecedented scale to solve the real-time
global optimization problems that are ubiquitous in robotics.
The approach is outlined in a mathematically sound
framework, and is argued to be economically viable compared
to human labor in generating robust robot behaviors.

Future research should address whether a library can
represent repeatable motion patterns:

1. How large must a motion library be to tackle
complex problems? Existing techniques can handle
dozens of primitives, but new retrieval techniques are
needed to scale to thousands or millions. If billions
or trillions of motions are needed, then the approach
is likely impractical.

2. How can common motifs (steering maneuvers,
footsteps, grasps) be clustered and segmented to be
used as primitives in the vast amounts of generated
data?

And how to implement primitive retrieval:

3. What problem features and indexing structures yield
fast and effective primitive retrieval? Image retrieval
techniques scale to millions of images due to decades
of research in high-quality image features (e.g.,
SIFT, HOG) and approximate nearest neighbors
techniques, while research on robot control problem
retrieval is practically nonexistent.

4. How does the power of the adaptation routine affect
library applicability and responsiveness? Stronger
adaptation lessens the need for larger libraries, at the
expense of more online computation.

This paper outlined a number of promising approaches for
addressing these research challenges, and sketched out the idea
of learning adaptation-sensitive problem similarity metrics.

Outside of the scope of this paper, but still important for the
success of a motion library method, are research directions in
closing the loop with high-level planning and perception:

5. How can planners efficiently compose long-term,
high-level behavior out of primitives, particularly
where multiple primitives appear equally favorable to
achieve a goal?

6. How should the robot incorporate sensing feedback
to compensate for simulation errors?

Should this effort be successful in overcoming the intractability
of global optimization, it could usher in dramatic advances in
real-time control of complex tasks, such as those that are
typical in household, industrial, and space robots.

REFERENCES

[1] L.P. Kaelbling, M.L. Littman, A.W. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, Vol 4, pages 237-
285, 1996.

[2] K.L. Moore. Iterative learning control: an expository overview. Applied
and computational control, signals, and circuits, 1999.

[3] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement
primitives. Robotics Research, Springer Tracts in Advanced Robotics,
vol 15, pages 561-572, 2005.

[4] Okan Arikan and David A. Forsyth. Interactive motion generation from
examples. ACM Transactions on Graphics (ACM SIGGRAPH 2002),
21(3):483-490, 2002.

[5] Lucas Kovar, Michael Gleicher, and Frederic Pighin. Motion graphs. In
SIGGRAPH, pages 473-482, San Antonio, Texas, 2002.

[6] Michael Gleicher. Retargetting motion to new characters. In
SIGGRAPH, pages 33-42, 1998.

[7] Zoran Popovic and Andrew Witkin. Physically based motion
transformation. In SIGGRAPH, pages 11-20, 1999.

[8] Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran
Popovic. Style-based inverse kinematics. ACM Trans. Graph.,
23(3):522-531, 2004.

[9] Katsu Yamane, James J. Kuffner, and Jessica K. Hodgins. Synthesizing
animations of human manipulation tasks. ACM Trans. Graph.,
23(3):532{539, 2004.

[10] Nikolay Jetchev and Marc Toussaint. Trajectory prediction: learning to
map situations to robot trajectories. Proceedings of the 26th
International Conference on Machine Learning (ICML-09), 2009.

[11] Nikolay Jetchev and Marc Toussaint. Fast motion planning from
experience: trajectory prediction for speeding up movement generation.
Autonomous Robots. 34(1-2): 111-127, January 2013.

[12] A. Dragan, G. Gordon, and S. Srinivasa. Learning from Experience in
Manipulation Planning: Setting the Right Goals. Int'l Symposium on
Robotics Research, 2011.

[13] Berenson, D.; Abbeel, P.; Goldberg, K. A robot path planning
framework that learns from experience. IEEE Int’l Conference on
Robotics and Automation (ICRA), May 2012.

[14] Kris Hauser, Timothy Bretl, Kensuke Harada, and Jean-Claude
Latombe. Using motion primitives in probabilistic sample-based
planning for humanoid robots. In WAFR, New York, NY, 2006.

[15] J. Markoff. Opening Doors on the Way to a Personal Robot. New York
Times, June 8, 2009.

[16] Amazon EC2 Pricing. http://aws.amazon.com/ec2/pricing/ (retrieved on
5/1/2013).

http://aws.amazon.com/ec2/pricing/

