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Abstract—This work presents an action execution system that
uses as foundation very basic sensorimotor schemes. These
schemes are learned as a product of the interaction with an agent
with its environment. In the example experiment, a mobile agent
learns an association between changes in its sensory perception
and the movements it performs. Once it has this acquired
knowledge, the agent is then capable of performing a mirror
action to match an observed gesture. This is seen as a first step
toward learning motor control strategies for a robot control task.

I. INTRODUCTION

Human-robot interaction is usually confined within the
research laboratories. As a step of moving robots outside of
laboratories and into the real world, a robot waiter scenario is
proposed, which is based on integration of multiple research
areas into a final platform [8]. Toward this goal, robot control
based on gesture recognition was considered [3, 5]. This paper
presents the recognition and execution of direction gestures,
namely left, right, up and down, as a mean for basic robot
control and attention manipulation. The motor control strategy
is a result of learning internal models through sensorimotor
exploration, as demonstrated by Dearden and Demiris [4].
Changes in sensory input, represented by the changes of
the location of the person’s right hand, are observed during
learning solely as a result of the robot’s exploration.

The goal of the presented experiment is to display the via-
bility of learning motor control based on self-exploration. The
presented approach could also be applied to other scenarios,
such as learning tool-use [11], learning how to focus eyes on a
particular object, learning relations between a motor command
and position of the end effector in space – in general the
result of particular motor actions on the robot’s environment.
A relation between a motor command and its consequence
would be learned from the collected data. This relation can be
also used in the other direction – if the robot has a particular
goal or state that needs to be reached, the relation could predict
what is the appropriate motor command that would take the

robot to the desired state.
The topic of learning inverse kinematics has been an area

of interest for some time. D’Souza et al. presented a method
for learning inverse kinematics for a robot arm using locally
weighted projection regression [6]. A similar approach is pre-
sented by Lapreste et al. [9]. However, the approach presented
here does not employ machine optimization strategies, yet
achieves sufficient results for the rotation task. Previous work
by Schillaci et al. showed that a similar approach can be used
to learn a motor control strategy for pointing or reaching for
a robot arm using motor babbling during learning and internal
models for prediction [11]. An argument for importance of
internal models in motor learning and possible approaches is
given by Wolpert et al. [15].

II. INTERNAL MODELS AND GESTURE RECOGNITION

A. Internal Models

Internal models represent a theoretical concept, consisting
of a pair of inverse and forward models, represented in figure
1. Depending on a problem, an inverse model can predict a
motor command Mt that leads the system from the current
state St to a desired state St+1, or, based on the observed
change of states from St to St+1, predicts an appropriate
motor command Mt. The forward model performs an internal
simulation and predicts the state S∗

t+1 that would be the result
of the motor command Mt in the state St.

Similar to our approach, Dearden and Demiris perform
learning of forward models for action execution [4]. In their
work, a mobile robot observes the motion of its gripper while
sending to it random motor commands. A forward model
is obtained, that establishes the connection between motor
commands and the changes in the visual space caused by
those motor commands. This way, the system is able to imitate
human movements.

Akgün et al. [1] show how an action generation mechanism
can be used for action recognition. They developed an online



recognition system, that was able to recognize a reaching
action before it was fully executed.

Haruno et al. [7] and Wolpert and Kawato [16] present
evidence for development of multiple, tightly-coupled inverse
and forward models. The forward model predicts the result
of the motor command generated by the inverse model. The
selection of the best inverse-forward model pair is done
through comparison of predictions of all forward models to
the expected result. Schillaci et al. [12] used multiple internal
models to perform recognition of human behavior, where each
internal model encodes an action. Blakemore et al. [2] present
how a difference in the prediction of the forward model and
the perceived sensory input helps a person discriminate a
self-induced sensation (e.g. self-movement of the eye) from a
sensation induced by others (e.g. moving the eye by pressing
on the eyelid). Furthermore, Takemura and Inui [14] present
a model for the development of internal models for reaching
movement, inspired by infant development.
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Fig. 1. Internal models. An inverse model predicts a motor command Mt

that leads the system from the current state St to St+1. A forward model
predicts the state S∗

t+1 based on the current state St and the motor command
Mt.

B. Gestures

As presented in [13], certain aspects of robot behavior have
been identified in order to increase intuitiveness of interaction,
such as enhanced feedback from the robot. Robot pointing
was used to manipulate human attention. On the other side,
gestures can be used to manipulate robot attention and to
indicate intentions of a human participant. Therefore, robust
gesture recognition is important for a satisfying, real-life
human-robot interaction.

Gesture recognition is based on detection of the position
(static) or the motion (dynamic) of human body parts, usually
arms, hands and legs. It has numerous applications, including
sign-language for hearing-impaired people, computer inter-
faces, natural and intuitive human-robot interaction, gaming
industry, system remote control, among others. Various tools
have been used for gesture recognition, based on the ap-
proaches ranging from statistical modeling, computer vision
and pattern recognition, image processing, connectionist sys-
tems, etc. [10].

However, learning from self-exploration to observe and
reproduce certain actions from gestures of others has not been
done before, apart from work of Dearden and Demiris [4].
The proposed model learns to execute actions associated with
directional gestures. The learned motor controls are a result
of a motor babbling process, during which a random motor
command is generated and a change in the sensory input is
observed and stored.

III. PROPOSED MODEL

The proposed model uses as sensory situation the detected
coordinates of the arm of a person as tracked by a Kinect. The
motor commands are fixed movements of the mobile platform.

In our model, we want to perform the fusion of sensorimotor
information. To achieve this, the system needs to collect, for
each time step, a vector of the form:

(x, y, z);M (1)

where (x, y, z) represent the coordinates of the hand de-
tected by the Kinect and M represents a random motor
movement. This movement can be either in the left-right plane,
performed by the robot as a rotation for a random angle, within
[−27◦, 27◦] or in the up-down plane, performed as a tilt angle
in the Kinect within [0◦, 16◦] (ranges were selected to always
have the person’s upper body visible).

Once a database of these associations is collected, it can be
used as either a forward or an inverse model, depending on
the question asked.

The inverse model predicts a motor command Mt, when
presented with a change in the sensory situation from St to
St+1. The forward model, given the current sensory situation
St and a motor command Mt predicts the new sensory
situation after the execution of the command, S∗

t+1. In the
proposed application, that is a gesture-controlled robot, during
the learning process random motor commands induce changes
in sensory situations, that is in the position of the hand. The
model associates the performed motor command Mt with
the sensory situation before the execution St and after the
execution St+1. During execution the model performs a search
for a motor command Mt that matches the sensory change,
only this time induced by a person by moving their hand.

It could be said, that the model learns how to execute
actions. It learns how the self-motion corresponds to changes
in the world, which is then applied during the execution,
when it is required to reproduce an action that resulted in the
observed change. The resulting behaviour can be also seen
as an attention manipulation system, where the robot turns
following the motion of a hand.

IV. EXPERIMENTS AND RESULTS

Two experiments were performed to learn the mapping
between the motor commands and changes in the sensory
situation. A robot platform robuLAB, displayed in figure 2,
was used in the experiments. In the first experiment, the
association of “up” and “down” gestures and Kinect’s up and
down movements was formed, while in the second experiment
the association of “left” and “right” gestures and the rotation of
the robuLAB platform was learned. The following description
shows the outline of both experiments, and “the platform”
represents either the Kinect or the robot platform. In the former
case, the motor commands were tilting the Kinect, while in
the latter they were rotation of the robot platform around the
z-axis.



Fig. 2. Experimental platform

A person stood in front of the platform at the beginning
of the experiment. The Kinect was tracking the location of
the person’s right hand, provided by the Microsoft’s Kinect
SDK. During the learning stage the platform was performing
motor babbling, which was a generation of random motor
commands. Every motor command induced a change in the
sensory situation, that is the change of the 3D location of
the person’s hand. This change, represented with the (x, y, z)
vector of the hand movement in Kinect’s frame of reference,
corresponds to the rotation angle of the platform. In other
words, if the platform rotates to the left, the hand will be
seen as moving right. However, during the execution phase,
if the platform perceives the hand moving right, it should
rotate to the right, instead of left. During the learning process,
initial rotation of the platform and the generated random motor
command, represented as a rotation angle, was stored, as well
as the 3D position of the hand before and after the rotation.

A k-nearest neighbors search algorithm was used for imple-
mentation of the inverse model. Theoretically, the initial state
St represents the initial position of the hand, and the next state
St+1 the new position of the hand, resulting from the person’s
movement. The predicted motor command Mt represents the
rotation angle of the robot that it needs to perform in order to
compensate for the motion of the person’s hand. However, in
order to make the implementation more robust with regards to
the person’s location in space, St and St+1 are combined and
represented as the difference vector of the new and the initial
location of the person’s hand.

When the platform observes the movement of the person’s
arm, it uses the perceived change in the hand’s location to
predict a motor command that will compensate for the motion
of the arm. The resulting action can be seen as recognition of
a dynamic gesture and its corresponding motion.

Testing of the algorithm was done using the rotation of the
robuLAB platform. Training was performed with 60 points
from motor babbling. Testing was performed with hand move-
ments to the left or to the right for 25 times. On average,
absolute hand displacement of the user was (x, y, z) =

(0.43, 0.24, 0.06)m, s.d. = (0.13, 0.12, 0.05) and the error of
the prediction resulted in the absolute mismatch between the
initial hand position and the hand position after the rotation of
(x, y, z) = (0.08, 0.24, 0.06)m, s.d. = (0.06, 0.12, 0.04). The
results show that this approach can be used for learning motor
control for rotation based on the depth data of the user’s hand.

V. CONCLUSION AND FUTURE WORK

This work presents learning and execution of an inverse-
forward model pair to execute actions associated with direc-
tional gestures. While only the inverse model was trained, the
forward model could be easily added and used to predict the
hand location after the robot’s movement. This information can
be used for error measurement of the prediction and refinement
of the initial motion, if the error is higher then a certain
threshold. Future work could improve the proposed model
to understand pointing gestures, with the goal of learning a
control strategy for moving to a specific location. This location
would be indicated by a person pointing.
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[3] Saša Bodiroža, Guillaume Doisy, and Verena Vanessa
Hafner. Position-invariant, real-time gesture recognition
based on dynamic time warping. In Proceedings of the
8th ACM/IEEE international conference on Human-robot
interaction, HRI ’13, pages 87–88, Piscataway, NJ, USA,
2013. IEEE Press. ISBN 978-1-4673-3055-8.

[4] Anthony Dearden and Yiannis Demiris. Learning for-
ward models for robots. In Proceedings of the 19th
international joint conference on Artificial intelligence,
IJCAI’05, pages 1440–1445, 2005.

[5] Guillaume Doisy, Aleksandar Jevtić, and Saša Bodiroža.
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