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Introduction

We want to study coordination strategies for robots
in a shared workspace. We allow to individual
robots to have separate performance measures.

Problem: Find collision-free motion strategies that
are optimal in a multi-objective sense.

Applications:

AGVs in a factory setting.

General multiple robot coordination.
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Related Work

Centralized Methods
Schwartz and Sharir, 1983
Ardema and Skowronski, 1991

Barraquand and Latombe, 1991

Decentralized (“Fixed Path”) Methods
Erdmann and Lozano-Perez, 1986
Akella and Hutchinson, 2002
Siméon, Leroy and Laumond 2002

Peng and Akella, 2003

Roadmap Methods
LaValle and Hutchinson, 1998
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Problem Statement

Two polygonal robots R1 and R2 translating in the
plane.

Robots move on roadmaps G1 and G2 of
piecewise-linear paths.

Initial and goal configurations X init
i , X

goal
i ∈ Gi.

Allow instantaneous changes in speed.

Objective: Find a continuous collision-free path

C : [0, 1] → G1 × G2

from (X init
1

, X init
2

) to (Xgoal
1

, X
goal
2

).
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Optimality

For a given coordination, each robot has a cost
function:

J = (J1, J2)

One approach is to choose a scalarization function
f : R

2 → R and optimize f(J).

Scalarizing may omit interesting solutions.

Priorities may change across multiple queries.

Better to find a small set of good candidate
solutions.
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Pareto Optimality

Rather than choosing any particular scalarization,
we find the set of Pareto optimal solutions.

Create equivalence classes of paths with
identical costs.

C ∼ C ′ := J(C) = J(C ′)

Define a partial order on equivalence classes:

[C] ≤ [C ′] := J1(C) ≤ J1(C
′) ∧ J2(C) ≤ J2(C

′)

Pareto optima are the minima in this partial
order.
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Coordination Space
O’Donnell and Lozano-Perez, 1989

We want to find a path through the coordination
space G1 × G2.

Obstacle regions where R1 collides with R2.

The slope of this curve determines the velocity of
each robot.

Slope ≥ 1: R2 at full speed

Slope ≤ 1: R1 at full speed.

Time to execute a segment is its L∞ length.
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Optima for Fixed Paths

Lemma: Every Pareto-optimal coordination class
contains a coordination composed of segments of
the visibility graph of the obstacle set, plus
possibly a “full speed completion.”

Proof Ideas:

Given any path, “shorten” it until it’s
constrained by obstacle vertices.

After moving past the last obstruction, both
robots should move at full speed to their goals.
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Optima for Fixed Paths

Algorithm:

Compute the obstacle set.

Find the visibility graph of obstacle set.

Add a full-speed completion from each vertex
for which this is possible.

Use Dijkstra’s algorithm to extract a set of
candidate solutions.

Candidate = Shortest path to obstacle
vertex + full-speed completion.

Use direct comparisons to eliminate
candidates that are not Pareto optima.
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Fixed Path Example

ICRA 2004. Chitsaz, O’Kane and LaValle – p.12/17



Fixed Path Example

ICRA 2004. Chitsaz, O’Kane and LaValle – p.12/17



Fixed Path Example
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Fixed Path Example

γ2

γ1

γ3

J(γ1) = (23, 11)

J(γ2) = (21, 15)

J(γ3) = (19, 25)
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Example
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Acyclic Roadmaps

G1 × G1 is a collection of 2-dimensional cells
pasted together at their boundaries.

f
g

h

= e× g

e× h

e× f×

e

Same method works. Only need a technique to

compute the visibility graph.
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Visibility in G1 × G2

Standard algorithm for R
2 (Lee, 1978): Radial sweep

about each vertex. Maintain a balanced tree of
intersected segments. O(n2 log n) time.

Our extension: Radial sweep in G1 × G2. Maintain
a separate balanced tree in each for each cell.

A ray in G1 × G2 passes through at most 2m
cells, where m is the total number of edges.

At most 2m binary tree operations to process
each event.

O(mn2 log n) time.
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Example
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Conclusion

Pareto optimality is an important solution
concept for multiple robot coordination.

Presented an O(m2n log n) time algorithm to
compute all Pareto optima for problems with m
edges in the roadmaps and n obstacle vertices.

Future Work:
n robots. (with R. Ghrist)
Cyclic graphs.
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