Exact Pareto-Optimal Coordination of Two Translating Polygonal Robots on an Acyclic Roadmap

Hamidreza Chitsaz, Jason M. O'Kane and Steven M. LaValle

{chitsaz, jokane, lavalle}@cs.uiuc.edu.

Introduction

We want to study coordination strategies for robots in ^a shared workspace. We allow to individual robots to have separate performance measures.

Problem: Find collision-free motion strategies that are optimal in ^a multi-objective sense.

Applications:

- AGVs in ^a factory setting.
- General multiple robot coordination.

Introduction

Overview

- Related Work
- Problem Statement
- Robots on Fixed Paths
- Generalization to Roadmaps
- **Examples**

Related Work

Centralized Methods

Schwartz and Sharir, 1983 Ardema and Skowronski, 1991 Barraquand and Latombe, 1991

Decentralized ("Fixed Path") Methods

Erdmann and Lozano-Perez, 1986 Akella and Hutchinson, 2002 Siméon, Leroy and Laumond 2002 Peng and Akella, 2003

Roadmap Methods

LaValle and Hutchinson, 1998

Problem Statement

Two polygonal robots \mathcal{R}_1 and \mathcal{R}_2 translating in the plane.

- Robots move on roadmaps \mathcal{G}_1 and \mathcal{G}_2 of piecewise-linear paths.
- Initial and goal configurations $X_i^{init}, X_i^{goal} \in \mathcal{G}_i.$
- Allow instantaneous changes in speed.

Objective: Find ^a continuous collision-free path

$$
C:[0,1]\to \mathcal{G}_1\times \mathcal{G}_2
$$

from (X_1^{init}, X_2^{init}) to (X_1^{goal}, X_2^{goal}) . ICRA

For a given coordination, each robot has ^a cost function:

$$
J=(J_1,J_2)
$$

One approach is to choose ^a scalarization function $f : \mathbb{R}^2 \to \mathbb{R}$ and optimize $f(J)$.

- Scalarizing may omit interesting solutions.
- Priorities may change across multiple queries.
- Better to find ^a small set of good candidate solutions.

Pareto Optimality

Rather than choosing any particular scalarization, we find the set of **Pareto optimal** solutions.

Create equivalence classes of paths with identical costs.

$$
C \sim C' := J(C) = J(C')
$$

Define ^a partial order on equivalence classes:

 $[C] \leq [C'] := J_1(C) \leq J_1(C') \wedge J_2(C) \leq J_2(C')$

Pareto optima are the minima in this partial order.

Coordination Space

O'Donnell and Lozano-Perez, 1989

We want to find a path through the *coordination* space $\mathcal{G}_1 \times \mathcal{G}_2$.

Obstacle regions where \mathcal{R}_1 collides with $\mathcal{R}_2.$

The slope of this curve determines the velocity of each robot.

- Slope ≥ 1 : \mathcal{R}_2 at full speed
- Slope $\leq 1: \mathcal{R}_1$ at full speed.

Time to execute a segment is its L^∞ length.

Lemma: Every Pareto-optimal coordination class contains a coordination composed of segments of the visibility graph of the obstacle set, plus possibly ^a "full speed completion."

Proof Ideas:

- Given any path, "shorten" it until it's constrained by obstacle vertices.
- After moving past the last obstruction, both robots should move at full speed to their goals.

Optima for Fixed Paths

Algorithm:

- Compute the obstacle set.
- Find the visibility graph of obstacle set.
- Add ^a full-speed completion from each vertex for which this is possible.
- Use Dijkstra's algorithm to extract ^a set of candidate solutions.
	- Candidate ⁼ Shortest path to obstacle vertex + full-speed completion.
- Use direct comparisons to eliminate candidates that are not Pareto optima.

Example

Acyclic Roadmaps

 $\mathcal{G}_1 \times \mathcal{G}_1$ is a collection of 2-dimensional cells pasted together at their boundaries.

Same method works. Only need ^a technique to compute the visibility graph.

Standard algorithm for \mathbb{R}^2 (Lee, 1978): Radial sweep about each vertex. Maintain a balanced tree of intersected segments. $O(n^2 \log n)$ time.

Our extension: Radial sweep in $G_1 \times G_2$. Maintain a separate balanced tree in each for each cell.

- A ray in $\mathcal{G}_1 \times \mathcal{G}_2$ passes through at most $2m$ cells, where m is the total number of edges.
- At most $2m$ binary tree operations to process each event.
- $O(mn^2 \log n)$ time.

Example

Conclusion

- Pareto optimality is an important solution concept for multiple robot coordination.
- Presented an $O(m^2n\log n)$ time algorithm to compute all Pareto optima for problems with m edges in the roadmaps and n obstacle vertices.
- Future Work:
	- $\,n$ robots. (with R. Ghrist)
	- Cyclic graphs.