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Introduction

We want to study coordination strategies for robots
In a shared workspace. We allow to individual
robots to have separate performance measures.

Problem: Find collision-free motion strategies that
are optimal in a multi-objective sense.

Applications:
m AGVs In a factory setting.
m General multiple robot coordination.
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Related Work

Centralized Methods
Schwartz and Sharir, 1983
Ardema and Skowronski, 1991

Barraguand and Latombe, 1991

Decentralized (“Fixed Path”) Methods

Erdmann and Lozano-Perez, 1986
Akella and Hutchinson, 2002
Simeéon, Leroy and Laumond 2002

Peng and Akella, 2003

Roadmap Methods
LaValle and Hutchinson, 1998
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Problem Statement

Two polygonal robots R, and R translating in the
plane.

m Robots move on roadmaps G; and G, of
pDiecewise-linear paths.

= Initial and goal configurations X, X9°" ¢ G;.
m Allow instantaneous changes in speed.

Objective: Find a continuous collision-free path
C[O,l] Hgl ng

from (Xt Xinit) to (X9°% X9°).
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Optimality

For a given coordination, each robot has a cost
function:
J = (J1, Jo)

One approach is to choose a scalarization function
f:R?* — R and optimize f(.J).

m Scalarizing may omit interesting solutions.
= Priorities may change across multiple queries.

m Better to find a small set of good candidate
solutions.
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Pareto Optimality

Rather than choosing any particular scalarization,
we find the set of Pareto optimal solutions.

m Create equivalence classes of paths with
identical costs.

C~C:= JC)=JIC
m Define a partial order on equivalence classes:
O] < [C'] = J1(C) < J1(C" A J(C) < JH(Ch

m Pareto optima are the minima in this partial
order.



Coordination Space

We want to find a path through the coordination
space G X Gs.

m Obstacle regions where R; collides with R»s.
The slope of this curve determines the velocity of
each robot.

m Slope > 1: 'R, at full speed

m Slope < 1: 'R, at full speed.

Time to execute a segment is its L°° length.
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Optima for Fixed Paths

Lemma: Every Pareto-optimal coordination class
contains a coordination composed of segments of
the visibility graph of the obstacle set, plus
possibly a “full speed completion.”

Proof Ideas:

m Given any path, “shorten” it until it’s
constrained by obstacle vertices.

m After moving past the last obstruction, both
robots should move at full speed to their goals.
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Optima for Fixed Paths

Algorithm:
m Compute the obstacle set.

= Find the visibility graph of obstacle set.

m Add a full-speed completion from each vertex
for which this is possible.

m Use Dijkstra’s algorithm to extract a set of
candidate solutions.
= Candidate = Shortest path to obstacle
vertex + full-speed completion.

m Use direct comparisons to eliminate
candidates that are not Pareto optima.
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Fixed Path Example
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Example
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g1 x Gy Is a collection of 2-dimensional cells
pasted together at their boundaries.

<
r ><
g

Same method works. Only need a technique to

e X h

— e X f

e X g

compute the visibility graph.
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Visibility in G; x G,

Standard algorithm for R? (Lee, 1978): Radial sweep
about each vertex. Maintain a balanced tree of
intersected segments. O(n*logn) time.

Our extension: Radial sweep in G; x G,. Maintain
a separate balanced tree in each for each cell.

mAray in G; X G, passes through at most 2m
cells, where m Is the total number of edges.

m At most 2m binary tree operations to process
each event.

m O(mn*logn) time.
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Example
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Conclusion

m Pareto optimality is an important solution
concept for multiple robot coordination.

m Presented an O(m?nlogn) time algorithm to
compute all Pareto optima for problems with m
edges in the roadmaps and n obstacle vertices.

m Future Work:

= n robots. (with R. Ghrist)

= Cyclic graphs.
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