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Abstract

As mobile robots operate with limited resources which they carry onboard in large ob-

structed environments, their success is dependent on how efficiently they move while they

avoid collision with obstacles and other robots. Moving optimally is the ultimate efficiency

a mobile robot can achieve. Therefore, planning optimal motions and devising optimal

coordination strategies are two important and challenging fundamental problems in mobile

robotics, which have received significant attention in the last couple of decades. Both of

those problems can be reduced to shortest path, or equivalently geodesic, problems in ap-

propriate geometric settings. Geodesic problems have been studied in two disciplines: 1)

optimal control theory, and 2) computational geometry. Optimal control theory has focused

on the differential constraints of robotic systems, while computational geometry has focused

on shortest path problems in an environment with obstacles. Optimal control theory has

historically disregarded obstacles in the environment, and computational geometry does

not consider dynamics of the robotic system, various optimality criteria, or multi-objective

optimality. While each discipline has its own powerful tools to address some geodesic prob-

lems, there is a large class of problems that cannot be solved using existing algorithms and

methods. We introduce a unified approach that is inspired by main results in both disci-

plines. In this dissertation, we demonstrate our technique, which combines the celebrated

Pontryagin Maximum Principle from optimal control theory with visibility graph methods

from computational geometry, by solving three geodesic problems for mobile robots: 1)

geodesics for the differential drive among obstacles, 2) geodesics for a kinematic airplane,

and 3) optimal coordination of two polygonal robots moving on a predetermined network

of paths.

We consider the differential drive because it is ubiquitous in mobile robotics. To ob-
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tain a well-defined notion of shortest, the total amount of wheel rotation is optimized. We

analytically characterize minimum wheel-rotation trajectories in the absence of obstacles,

and identify 52 different minimum wheel-rotation trajectories. In the presence of obstacles,

every minimum wheel-rotation trajectory is composed of two kinds of subtrajectories: on

the boundary of obstacles and in the interior of collision-free space. We prove those sub-

trajectories that lie in the interior of collision-free space are tangent to the obstacles at

both ends. The bitangency condition yields a nonholonomic bitangency graph which is a

network of collision-free trajectories in which the solution is sought. In general, our non-

holonomic bitangency graph is a 2-dimensional subset of the 3-dimensional configuration

space of the robot. Therefore, further optimization or a continuous search may be required

to answer queries. However if obstacles are circular and far enough from one another, the

graph is a 1-dimensional subset of the configuration space and any graph search algorithm,

such as Dijkstra’s algorithm, extracts the solution. In the second problem, we introduce

a new kinematic airplane model. Our airplane is a natural extention of the Dubins car

[56], and extends it with an additional configuration variable for the altitude. We use the

Pontryagin Maximum Principle to analytically characterize geodesics for it. To obtain a

notion of shortest, time is optimized. Finally, we present an algorithm for computing opti-

mal coordination of two polygonal robots without differential constraints. Each robot has a

reference point that must lie on a network of paths called a roadmap. Each robot wants to

move from its given initial location to its goal location without colliding with the other one.

Rather than impose an a priori cost scalarization for choosing the best combined motion,

we consider finding motions whose cost vectors are Pareto-optimal. Pareto-optimal coor-

dination strategies are the ones for which there exists no strategy that would be better for

both robots. The problem is equivalent to computing geodesics in the coordination space

which is the Cartesian product of the roadmap with itself. We extend visibility graphs to

solve the problem. If the roadmap is acyclic, then our algorithm has O(mn2 log n) time

complexity, in which m is the number of paths in the roadmap, and n is the number of

coordination space vertices. For cyclic roadmaps, our algorithm computes solutions in time

O(25αm1+5αn2 log(m2αn)), in which α = 1 + ⌈(5ℓ + r)/b⌉ where ℓ is total length of the
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roadmap, r is total length of coordination space obstacle boundary, and b is the length of

the shortest edge in the roadmap.
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Chapter 1

Introduction

1.1 Motivation

Mobile robot technology is expected to have deep near-term impact in our society after

having seen a long period of research. iRobot’s Roomba, an autonomous home vacuum

cleaner, and RoboMower, an automatic lawn mower, are instances of autonomous mobile

robots which have already entered home zone. Honda’s Asimo, a sophisticated humanoid

robot, is expected to be robust, fast, and autonomous enough to be deployed as a home

assistant in near future1. We may soon see humanoid robots provide assistance and com-

panionship to the elderly. In the industry zone, Kiva Mobile Fulfillment System (Kiva MFS)

uses a breakthrough new approach to order fulfillment in a commercial distribution center.

With the Kiva MFS, operators stand still while the products stored on inventory pods are

picked up and brought to them by a fleet of mobile robotic drive units2. In addition, pre-

built research mobile robotic platforms such as the Pioneer3 and Khepera4 are increasingly

deployed in experimental robotics research.

Mobile robots usually operate with limited resources which they can carry onboard in

a large obstructed environment. Most likely, there are other agents such as humans and

other robots in the environment as well. A perfect example is the Kiva MFS in which

several mobile robotic drive units carry pods around a large inventory without colliding

with stationary pods or each other. For the system to be applicable, robots have to avoid

obstacles and coordinate their motion with one another. Time sensitivity of their mission

1http://asimo.honda.com
2http://www.kivasystems.com/
3http://www.mobilerobots.com/
4http://www.k-team.com/
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and also limited power they can carry onboard makes it essential for mobile robots to move

around optimally. As a result, planning optimal collision-free motion for mobile robots has

been one of the most important and challenging problems in robotics.

This problem has been studied in two different disciplines: optimal control theory and

computational geometry. Each discipline deals with a specific category of optimal motion

planning problems for mobile robots. Optimal control theory, a generalization of the cal-

culus of variations [65], is a mathematical optimization method [118] for deriving control

policies [21, 33]. The method is largely due to the work of Lev S. Pontryagin and his

collaborators, summarized in English in [141]. Optimal control theory deals with the prob-

lem of finding a control law for a given system such that a certain optimality criterion is

achieved. The optimal control can be derived using the Pontryagin Maximum Principle

which is a necessary condition [141], or by solving the Hamilton-Jacobi-Bellman equation

which is a sufficient condition [18]. It is worth mentioning that optimal control is closely

related to sub-Riemannian-Finslerian geometry depending on the properties of the system

[23, 92, 115, 127]. In geometric settings, an optimal path is called a shortest path or a

geodesic. In this dissertation, we broadly adopt that usage for ’geodesic’. Computational

geometry is the study of algorithms to solve problems stated in terms of geometry [52].

For instance, the following is a problem studied in computational geometry: given a set of

polyhedral obstacles in a Euclidean space, having a total of n vertices, design algorithms for

efficient (exact or approximate) calculation of a shortest, obstacle-avoiding path connecting

any two query points.

Besides analytical tools, numerical methods have been developed to compute optimal

paths. For instance, level set methods have proven to be successful in numerically solving

Hamilton-Jacobi equation in various applications [132, 156]. As it was coined by Bellman,

those methods suffer from the curse of dimensionality [18]. In a philosophically different

approach, Discrete Mechanics and Optimal Control offers a unified framework for designing

numerical symplectic integrators with desired precision [84, 120]. Symplectic integration

methods can be applied to high-dimensional systems, but they give only local optimal solu-

tions. Therefore, analytical characterization of optimal paths is a challenging but extremely
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rewarding approach for solving optimal path problems.

Historically, optimal control for linear systems has been profoundly studied and almost

thoroughly resolved, because it is very common in control theory to model reality as a linear

system. Mobile robots are highly nonlinear systems, in which case linear optimal control

results are irrelevant. On the other hand, nonlinear optimal control tools have focused on

the differential constraints of the system rather than work space obstacles. Computational

geometry has mainly focused on shortest paths for a point robot, often without differential

constraints, in a cluttered work space. As a result, a large class of optimal motion planning

problems for mobile robots cannot be solved by existing methods. In this dissertation,

we present a unifying novel approach, based on nonlinear optimal control tools and some

computational geometry techniques, to planning optimal motions for mobile robots. We

demonstrate our approach by considering three mobile robot mechanisms: the differential

drive which is ubiquitous in mobile robotics, an aircraft model, and polygonal robots without

differential constraints. Our complete mathematical characterization of shortest paths for

those mechanisms is also helpful in mechanism design, computing a nonholonomic metric

for motion planning algorithms, and building a local motion planner. We expect our work to

have significant practical impact in broad areas such as mobile robotics, autonomous vehicles

control, airtraffic control, autonomous inventory management, and computer animation.

Our results can be used to optimize a class of task specifications for mobile platforms. Our

characterization of shortest paths will have direct practical impact in aerial vehicles, home

robots such as iRobot, manufacturing mobile robots, and automated inventory systems such

as Kiva MFS.

Another motivation for this work emanates from the fact that one can simplify the

control and planning problem, usually in the presence of obstacles, by piecing together a

set of elementary trajectories chosen from a library. Such pieces of trajectories that can be

combined sequentially to produce more complicated trajectories are called motion primitives

[19, 64, 73]. They may even be computed and stored offline, particularly when there are

symmetries, to yield speedup in online motion planning applications such as computer

games. Many motion planning approaches have relied on good motion primitives. Finding
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suitable motion primitives for a robot is an area of recent, active research. One approach

is using the optimal trajectories as motion primitives. For instance, Latombe successfully

used shortest paths in a fast path planner for an indoor mobile robot among obstacles

[98]. There are many other successful examples of using optimal paths as motion primitives

[6, 64, 122]. In this dissertation, our characterization of geodesics for mobile robots yields

sets of motion primitives for the demonstrated mechanisms.

1.2 Related Work

1.2.1 General Motion Planning

Motion planning as a field was started by the introduction of configuration spaces by Lozano-

Pérez [116, 117]. A robot usually works in a 2D or 3D environment with obstacles, which

is called the work space. Lozano-Pérez suggested that one can add a layer of abstraction

by associating any motion of the robot with a path in the set of feasible distinct robot con-

figurations. There is a natural correspondence between work space obstacles and obstacle

regions in the configuration space. Reif showed that motion planning is PSPACE-hard [144].

Schwartz and Sharir gave the first complete motion planning algorithm for a rigid body in

two and three dimensions [153, 154, 155]. Their algorithm is based on geometric methods,

specifically Collins decomposition [50]. The running time of Schwartz-Sharir algorithm is

doubly-exponential in the dimension of the configuration space. There have been sporadic

motion planning algorithms given for specific systems as well [31, 55]. Canny proposed the

roadmap algorithm, which is a singly-exponential general motion planning algorithm based

on Morse theory and resultants in commutative algebra [37]. Since the problem was shown

to be PSPACE-hard, Canny’s algorithm was regarded as a theoretical bottom-line at that

time. Emiris later gave an improved algorithm for computing resultants that is interesting

in its own right [59]. Recently, Canny’s algorithm was polished and improved by Basu et

al. [16, 17]. Complete general motion planning algorithms, namely Schwartz-Sharir and

Canny’s, are based on real algebraic geometry algorithms which are extremely difficult to

implement. Moreover, they completely ignore differential constraints. Therefore, poten-
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tial field and sampling-based methods emerged in the 1990s to address practical motion

planning problems.

Discretization and grid search were among the first attempts along those lines [40, 91,

107]. The first sampling-based motion planning algorithm to gain significant popularity was

the Randomized Path Planner of Barraquand and Latombe [14]. Probabilistic roadmaps

(PRMs) [87] and Rapidly-exploring Random Trees (RRTs) [102, 105] are continuations

of that trend. There are other variations of sampling-based motion planning algorithms

[80, 97, 112, 121]. Probabilistic roadmaps sample the configuration space and attempt

to connect nearby free samples with a collision-free path computed by a local planner.

Rapidly-exploring Random Trees explore the configuration space by building a search tree.

PRMs have been modified to give a significant number of extensions and applications [8,

9, 24, 28, 34, 35, 90, 96, 108, 139, 140, 157, 167, 175, 177]. RRTs have also generated a

diverse set of applications and variants [22, 29, 32, 41, 48, 61, 63, 83, 86, 89, 109, 110, 111,

148, 169, 177, 179]. Path planning algorithms based on potential fields follow the gradient

of a potential or navigation function, which usually combines a term attractive to the goal

state with terms repulsive to the obstacles [74, 88, 94, 113, 114, 147, 166, 172]. Potential

fields and its variants usually suffer from local minima. For a complete exposition to such

methods, see [99, 103].

1.2.2 Motion Planning for Mobile Robots

Mobile robots are typical examples of nonholonomic systems, which are characterized by

constraint equations containing the time derivatives of the system configuration variables.

The equations are non-integrable and typically arise when the system has less controls

than configuration variables. For example, a differential drive robot has two controls and

three configuration variables [13]. As a result, any path in the configuration space does not

necessarily correspond to a feasible motion for the robot. Even in the absence of obstacles,

planning nonholonomic motion is not an easy task. As of writing this dissertation, there is

no general algorithm to plan motions for any nonholonomic system so that the system is

guaranteed to exactly reach a given goal. Existing results are general approximate methods,
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and exact methods for a class of nonholonomic systems that includes car-like robots [101].

1.2.3 Motion Primitives

Many general motion planning methods have relied on good motion primitives, which are

pieces of trajectories that can be concatenated in an appropriate way to yield a solution.

Latombe successfully used Reeds-Shepp curves in a fast path planner for an indoor mobile

robot among obstacles [98]. Conner et al. used a set of continuous local feedback control

policies and a discrete automaton to plan verifiably correct motions for a mobile robot in

a changing environment [51]. Mehta and Egerstedt used optimal control for constructing

control programs from a given collection of motion primitives, and also for augmenting the

motion primitive set [122]. Frazzoli et al. proposed a set of motion primitives, for a six-

dimensional aircraft, which contains pieces of optimal trajectories called trim trajectories

[64]. Shortest paths are interesting because they provide optimal motions and also they are

used in many applications as sets of motion primitives. We now focus on optimal-motion

planning methods for mobile robots.

1.2.4 Nonlinear Optimal Control

Nonholonomic shortest path problems, in the absence of obstacles, have been studied for

many mobile robots [12, 13, 49, 56, 142, 160, 161, 163, 164, 174]. The first work on short-

est paths for car-like vehicles was done by Dubins [56], who gave a characterization of

time-optimal trajectories for a car with a bounded turn radius that always moves forward

with constant speed. Dubins used a purely geometrical method to characterize shortest

paths in this setting. Later, Reeds and Shepp solved a similar problem in which the car

is able to move backward as well [142]. They identified 48 different classes of paths such

that between any pair of configurations there is a shortest path in one of those classes.

Shortly after Reeds and Shepp, their problem was solved and also refined by Sussmann and

Tang [164] and by Boissonnat, Cérézo, and Leblond [25] with the help of optimal control

techniques. Sussmann and Tang showed that only 46 different shortest path classes are

necessary for the Reeds-Shepp car. Souères and Laumond classified the shortest paths for
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the Reeds-Shepp car into symmetric classes, and also gave the optimal control synthesis, i.e.

the path class and its parameters for any pair of configurations [161]. Balkcom and Mason

gave a complete characterization of time-optimal trajectories for the differential drive [13].

They also characterized the time-optimal trajectories for an omni-directional mobile robot

[12]. Souères and Boissonnat studied the time optimality of the Dubins car with angular

acceleration control [160]. They presented an incomplete characterization of time-optimal

trajectories for their system. A full characterization of such time-optimal trajectories seems

to be difficult because Sussmann proved that some time-optimal trajectories for that sys-

tem require infinitely many input switchings in a finite time interval (chattering or Fuller

phenomenon) [163]. Sussmann used Zelikin and Borisov’s theory of chattering control to

prove his result [181]. Reister and Pin took a numerical approach to time optimality for

differential-drive robots [145]. Renaud and Fourquet studied numerical time-optimal paths

for acceleration-driven mobile robots [146]. Chyba and Sekhavat studied time optimality

for a mobile robot with one trailer [49]. A car with multiple trailers is an example of a

chained system and Goursat structure [134, 149, 159]. Geodesics for Goursat structures

were studied by Pasillas-Lépine and Respondek [135], and for chained systems by Sarychev

and Nijmeijer [151]. However, a complete characterization of the time-optimal trajectories

for a bounded velocity car with n trailers is still an open problem.

1.2.5 Shortest Path Algorithms

Here we divert our attention from nonholonomic shortest path results, and consider shortest

paths among obstacles without nonholonomic constraints [70, 76, 79, 117, 123, 129]. Canny

and Reif showed that the problem, among general polyhedral obstacles, is NP-hard in the

three dimensional Euclidean space [36]. On the contrary, there are polynomial time approx-

imation algorithms for that problem [47, 133]. There are several polynomial algorithms for

the two dimensional case. The 2-dimensional shortest path problem has been formulated

mainly in two different settings: semialgebraic obstacles [70, 75] and polygonal obstacles

[78, 79, 117]. In this dissertation, we focus on the second setting; a method that inspires

some of our work is the visibility graph method [52]. The visibility graph was introduced
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for motion planning by Nilsson [129]. A visibility graph comprises a network of collision-

free shortest path segments between obstacle vertices. The graph is usually built offline to

answer multiple shortest path queries. To compute the visibility graph, Lee gave a radial

sweep algorithm with O(n2 log n) time complexity [106]. Later in Section 2.4, we will give a

detailed overview of Lee’s algorithm. A more efficient algorithm, which runs in O(n2) time,

has been proposed [58]. Ghosh and Mount gave an optimal output-sensitive algorithm for

computing the visibility graph [66]. Any algorithm that computes the shortest path by

first constructing the entire visibility graph has at least quadratic running time. Mitchell

showed that the shortest path can be computed in O(n3/2+ǫ) time [124]. Hershberger and

Suri developed an optimal algorithm for the shortest path problem [79]. Their algorithm

runs in O(n log n) time. A shortest polygonal path with specified endpoints can be de-

termined efficiently in a simple polygon [72, 77] and with a specified homotopy [70, 78].

Furthermore, using the idea of retraction motion planning [131], a path of maximum clear-

ance, within a specified homotopy class, can be determined efficiently from the generalized

Voronoi diagram of the domain. For a survey on current shortest path methods see [125].

1.2.6 Combined Approaches

Differential constraints add a major level of difficulty to shortest path problems. Desaulniers

proved that the shortest path for the Reeds-Shepp car need not even exist among obstacles

[53]. However, the shortest path always exists for the Dubins car and the convexified Reeds-

Shepp car. This fact can be proved using Filippov’s theorem [38]. Reif and Wang showed

that computing a shortest path for the Dubins car amongst general polygonal obstacles is

NP-hard [143]. In contrast, efficient approximation algorithms are known [2, 3, 82]. Lau-

mond studied shortest paths that are composed of straight line, arc, and obstacle boundary

for the Dubins car [100]. Fortune and Wilfong gave an algorithm to compute a collision-free

path for the Dubins car among polygonal obstacles [62]. Their algorithm is exponential in

time and space. Boissonnat et al. presented a linear time algorithm for finding a convex

unit-curvature path (not necessarily shortest), if one exists, in a simple polygon [26]. Ahn

et al. characterized reachable regions, by the Dubins car from a given start configuration,
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inside a convex polygon with n vertices [4]. They show that the number of such regions

is O(n). Agarwal et al. presented an O(n2 log n) time algorithm for determining whether

a collision-free path for the Dubins car exists between two configurations inside a convex

polygon [1]. Bereg and Kirkpatrick studied traversals of narrow corridors by unit-curvature

paths [20]. Lutterkort and Peters studied the construction of smooth paths, using spline

functions, in channels defined by two polygonal chains [119]. Boissonnat and Lazard gave

an O(n2 log n) algorithm for computing a shortest path for the Dubins car amongst disjoint

moderate obstacles [27]. An obstacle is said to be moderate if it is convex and its bound-

ary is a differentiable curve whose curvature is everywhere not more than 1. Agarwal et

al. obtained an O(n2 log n) algorithm for finding shortest paths for the Dubins car in a

convex polygonal region. They also gave an approximation algorithm for the Reeds-Shepp

car [2]. Note that their algorithm computes a collision-free path for the Reeds-Shepp car,

that is at most a constant amount longer than a shortest path. Moutarlier et al. studied

the problem of finding the shortest distance for the Reeds-Shepp car to a manifold in the

configuration space [128]. Desaulniers et al. gave an algorithm to compute the shortest

path for the Reeds-Shepp car among polygonal obstacles by decomposing the space into

polygonal regions and discretizing boundaries of the regions [54]. Venditelli et al. presented

a method to compute the shortest distance for a car-like robot from a given configuration to

the obstacle region [170, 171]. They used optimal control tools, namely the transversality

condition of the Pontryagin Maximum Principle, to solve the problem.

1.3 Our Contribution

In this dissertation, we integrate visibility graph methods and nonlinear optimal control

tools into a unified novel technique for computing geodesics for mobile robots among obsta-

cles. We demonstrate our technique by considering geodesics for three mechanisms: 1) the

differential drive among obstacles, 2) a kinematic airplane, which we call Dubins airplane,

and 3) multiple polygonal robots moving on a predetermined network of paths.
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1.3.1 Geodesics for the Differential Drive Among Obstacles

We consider the differential drive because it is a common mobile robot platform. To obtain

a well-defined notion of shortest, the total amount of wheel rotation is optimized. We

prove the existence of minimum wheel-rotation trajectories using the Filippov theorem. We

analytically characterize minimum wheel-rotation trajectories in the absence of obstacles.

Using that characterization and further analysis, we present a nonholonomic bitangency

graph which is used to find minimum wheel-rotation trajectories in the presence of obstacles.

Vertices of the graph are on the obstacle boundary, and there is an edge between two vertices

if they can see each other by a minimum wheel-rotation segment, which is conceptually like a

straight line segment in the Euclidean space. We give a general bitangency condition which

restricts possible edges. In general, our nonholonomic bitangency graph is a 2-dimensional

subset of the 3-dimensional configuration space of the robot. Therefore, further optimization

or a continuous search may be required to answer queries. When obstacles are circular and

far enough from one another, the graph is 1-dimensional and can be computed. In that

case, any graph search algorithm, such as Dijkstra’s algorithm, is employed to extract the

solution.

1.3.2 Geodesics for the Dubins Airplane

We analytically characterize geodesics for a new airplane model. Our airplane is a natural

extention of the Dubins car [56], and extends it with an additional configuration variable

for the altitude. In this way, our airplane is able to move in a 3D work space. To obtain

a notion of shortest, time is optimized. Besides a set of time-minimizing maneuvers, the

time-optimal trajectories comprise a useful set of motion primitives as it was discussed in

Section 1.1. The time-optimal trajectories also play a crucial role in air traffic management

systems [95, 168, 174, 182], e.g. in detecting the safety regions.

1.3.3 Combined Geodesics for Multiple Polygonal Robots

We present an algorithm for computing optimal coordination of two polygonal robots with-

out differential constraints. Each robot has a reference point that must lie on a given graph,
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called a roadmap, which is embedded in the plane. Each robot wants to move from its given

initial location to its goal location without colliding with the other one. Rather than impose

an a priori cost scalarization for choosing the best combined motion, we consider finding

motions whose cost vectors are Pareto-optimal. Pareto-optimal coordination strategies are

the ones for which there exists no strategy that would be better for both robots. The

problem is equivalent to computing L∞-geodesics in the coordination space which is the

Cartesian product of the roadmap with itself. We extend visibility graphs to solve the

problem.

1.4 Outline

We conclude this introductory chapter with preview of the remaining chapters.

In Chapter 2, we review required background material. We include only those subjects

that are needed throughout multiple chapters. We define geodesic problems for the differ-

ential drive and our airplane by presenting their respective differential constraints and cost

functions. We prove the existence of those geodesics using the Filippov theorem. Eventually,

the Pontryagin Maximum Principle and visibility graph method are reviewed.

In Chapter 3, we derive the family of 52 minimum wheel-rotation trajectories for a

differential-drive mobile robot in the plane without obstacles. Up to symmetry, we identify

6 different classes of minimum wheel-rotation trajectories that are maximal with respect to

subpath partial order. Minimum wheel-rotation trajectories are composed of three motion

primitives: rotation in place, straight line, and swing segments (one wheel stationary and

the other rolling). Six classes of minimum wheel-rotation trajectories are shown in Figure

1.1 and the robot model in Figure 2.1. We prove that minimum time for the convexified

Reeds-Shepp car [164] is equal to minimum wheel-rotation for the differential drive, and the

two families of optimal curves are identical. As of writing this dissertation, it is unknown

whether there is a proof for this fact that does not require optimal control tools. That

chapter was a joint work with Steven M. LaValle, Devin J. Balkcom, and Matthew T.

Mason [44, 45].

Our results in Chapter 3 form the first step of our approach to finding geodesics among
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(C) (D)

(E) (F)

Figure 1.1: Six classes of minimum wheel-rotation trajectories up to symmetry in Chapter
3.
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(A) (B)

(C)

Figure 1.2: (A) Euclidean visibility graph of three circular obstacles in the plane. (B) A
sample minimum wheel-rotation path. (C) A sample edge of the nonholonomic bitangency
graph.
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obstacles. We present the remaining three steps in Chapter 4:

1. Characterization of minimum wheel-rotation trajectories on the boundary of obstacle

region using the Pontryagin Maximum Principle,

2. Characterization of intersection points between free and boundary minimum wheel-

rotation trajectories using the Pontryagin Jump Condition [141], and

3. Definition of a nonholonomic bitangency graph in which the solution is sought.

Vertices of the nonholonomic bitangency graph are points on the obstacle boundary, and its

edges are composed of minimum wheel-rotation segments, each of which is either thoroughly

on the obstacle boundary or in the interior of the free portion of the configuration space.

The edges are generally bitangent, i.e. tangent to the obstacle boundary at both ends.

Figure 1.2 shows a sample Euclidean visibility graph, a minimum wheel-rotation path, and

the minimum wheel-rotation path as an edge of the nonholonomic bitangency graph. For

each shortest path query, initial and goal configurations are appropriately appended to the

graph, and a search on parts or all of the graph gives the solution.

In Chapter 5, we characterize time-optimal trajectories for our airplane through the

use of the Pontryagin Maximum Principle. We assume that the system has independent

bounded control over the altitude velocity as well as the turning rate in the plane. The

time-optimal trajectories are composed of three motion primitives: turns with minimum

radius, straight line segments, and pieces of planar elastica [85]. Some examples of time-

optimal paths are depicted in Figure 1.3. In the figure, those subpaths that are in between

ℓ+ and ℓ− are planar elastica, and others are arcs of circle. We distinguish three cases:

low, medium, and high goal altitudes of the airplane. Intuitively, if the goal altitude is

low, the airplane has to follow the shortest path for the Dubins car with an unsaturated

altitude velocity. If the goal altitude is high, the altitude velocity gets saturated and the

system has to maneuver until it reaches the goal altitude. For medium altitudes in between

low and high, the time-optimal path is either a locally longest curve for the Dubins car

or a path composed of turns and pieces of planar elastica with saturated altitude velocity.

Locally longest curves for the Dubins car, which cannot be infinitesimally elongated, play an
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Figure 1.3: Some examples of time-optimal paths for our airplane. Depicted paths are
projection of time-optimal trajectories onto the plane. Those subpaths between ℓ+ and ℓ−
are planar elastica; otherwise they are arcs of circle.
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Figure 1.4: A Pareto-optimal coordination problem on a roadmap with 7 edges. The two
robots want to exchange place.

(R1 cost, R2 cost)

(8.9,14.8)

(9.3,14.3)

(14.4,13.7)

(15.1,8.7)

Figure 1.5: The four solutions for the problem in Figure 1.4.

important role in the airplane time-optimal trajectories for medium altitude. An example

of such locally longest curves is a short arc of circle. As a by-product, we characterize

locally longest curves.

In Chapter 6, we present an algorithm to compute Pareto-optimal coordinations of two

polygonal robots moving on a roadmap. We first consider the case where the underlying

roadmaps are trees. We present an algorithm that computes the complete set of Pareto-

optimal coordination strategies in time O(mn2 log n), in which m is the number of paths in

the roadmap, and n is the number of coordination space vertices. Our algorithm computes

the visibility graph in the coordination space, augments it with extra edges, and computes

the shortest path. Figure 1.4 shows a coordination problem on a roadmap with 7 edges and
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Figure 1.5 presents the four Pareto-optimal solutions for the problem. Second, we present

an algorithm that solves the general case. That algorithm computes an upper bound on

the cost of each motion in any Pareto-optimal coordination. Thus, only a finite number of

homotopy classes of paths in the coordination space need to be considered. In effect, the

new algorithm applies the first algorithm to a finite portion of the universal cover of the

roadmap. The algorithm computes solutions in time O(25αm1+5αn2 log(m2αn)), in which

m is the number of edges in the roadmap, n is the number of coordination space obstacle

vertices, and α = 1 + ⌈(5ℓ + r)/b⌉ where ℓ is total length of the roadmap and r is total

length of coordination space obstacle boundary and b is the length of the shortest edge in

the roadmap. That chapter was a joint work with Steven M. LaValle and Jason M. O’Kane

[46].
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Chapter 2

Background

2.1 Geodesics for Mobile Robots

In this section, we define geodesic problems that we consider in this dissertation for the

differential drive and the Dubins airplane. According to some metric, a geodesic is a shortest

path among a class of admissible paths. In an equivalent formulation, a geodesic is an

admissible path that minimizes the integral of a cost function. We define admissible paths,

which satisfy the differential constraints and avoid obstacles, for the differential drive and

the Dubins airplane. We complete presentation of the problems by giving the cost function

for each problem.

2.1.1 Differential Drive

A differential-drive robot [13, 45] is a three-dimensional system with its configuration vari-

able denoted by q = (x, y, θ) ∈ C = R
2 × S

1 in which x and y are the coordinates of the

point on the axle, equidistant from the wheels, in a fixed frame in the plane, and θ ∈ [0, 2π)

is the angle between x-axis of the frame and the robot local longitudinal axis; see Figure

2.1.

b

u1

u2

θ

(x, y)

Figure 2.1: Differential-drive model.
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b

u1

u2

θ

(x, y)

r

Figure 2.2: A differential-drive disc of radius r.

The robot has independent velocity control of each wheel. Assume that the wheels

have equal bounds on their velocity. More precisely, u1, u2 ∈ [−1, 1], in which the inputs

u1 and u2 are respectively the left and the right wheel velocities, and the input space is

U = [−1, 1] × [−1, 1] ⊂ R
2. The system is

q̇ = f(q, u) = u1f1(q) + u2f2(q), (2.1)

in which f1 and f2 are vector fields as follows. Let the distance between the robot wheels

be 2b. In that case,

f1 =
1

2













cos θ

sin θ

−1
b













and f2 =
1

2













cos θ

sin θ

1
b













. (2.2)

The cost functional J to be minimized is

J(u) =

∫ T

0
L(u(t))dt, (2.3)

L(u) =
1

2
(|u1|+ |u2|). (2.4)

The factor 1
2 above helps to simplify further formulas, and does not alter the optimal

trajectories.

The robot is a closed disc of radius r > b; see Figure 2.2. We assume that there are n

obstacles, O1, O2, . . . , On, in the workspace of the robot. Each Oi is a bounded, open, and
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convex subset of R
2. Recall that the robot is a disc of radius r. Let

Pi = {p ∈ R
2 | d(p,Oi) < r} = Oi + Br, (2.5)

in which d is the Euclidean distance from a set, and Br is a disc of radius r. The obstacle

region in the configuration space of the robot is

Cobs = (P1 ∪ P2 ∪ · · · ∪ Pn)× S
1. (2.6)

We also assume that P i are disjoint. Hence

∂Cobs = (∂P1 ∪ ∂P2 ∪ · · · ∪ ∂Pn)× S
1. (2.7)

Note that Pi are open subsets of R
2, and hence, Cobs is open. Let Cfree = C\Cobs be the free

part of the configuration space. Note that Cfree is closed and ∂Cfree = ∂Cobs. It is obvious

that ∂Pi are simple, piecewise-smooth curves.

Proposition 2.1. The curvature of ∂Pi is not more than
1

r
everywhere, for i = 1, 2, . . . , n.

Sketch of proof. For every point p ∈ ∂Pi, a circle of radius r tangent to ∂Pi at p is contained

in Pi ∪ ∂Pi. This implies that the curvature of ∂Pi is not more than 1
r everywhere.

For every pair of free initial and goal configurations, not on the boundary of Cfree, we

seek an admissible control, i.e. a measurable function u : [0, T ] → U , that minimizes J

while transferring the initial configuration to the goal configuration in Cfree. Since the cost

J is invariant by scaling the input within U , we can assume without loss of generality that

the controls are either constantly zero (u ≡ (0, 0)) or saturated at least in one input, i.e.

max(|u1(t)|, |u2(t)|) = 1 for all t ∈ [0, T ]. Since u ≡ (0, 0) gives trivial motionless trajectory,

we assume throughout this dissertation that u 6≡ (0, 0). Throughout this dissertation, a

trajectory for which u ≡ (0, 0) over its time interval is called motionless.
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2.1.2 Dubins Airplane

Our model, called Dubins airplane, extends the Dubins car with an additional configura-

tion variable for the altitude. The Dubins airplane is a four-dimensional system with its

configuration variable denoted by p = (x, y, z, θ) ∈ C′ = R
3×S

1 in which x, y, and z are the

coordinates of the airplane in the three-dimensional Euclidean space, and θ ∈ [0, 2π) is the

angle between x-axis of the frame and the airplane local longitudinal axis in x − y plane;

see Figure 2.3. Equivalently, the Dubins airplane is the Dubins car, (x, y, θ) ∈ R
2×S

1, with

an additional configuration variable for altitude, z. This model is a simplified model of a

real airplane.

The system has independent bounded control of θ̇ and ż. In other words, the system is

ṗ = k(p, u) = k0(p) + uzkz(p) + uθkθ(p) (2.8)

in which k0, kz, and kθ are vector fields in the tangent bundle of the configuration space.

We assume the minimum turning radius and the maximum altitude velocity of the airplane

are 1. In this case, k0, kz , and kθ are

k0 =



















cos θ

sin θ

0

0



















, kz =



















0

0

1

0



















, and kθ =



















0

0

0

1



















. (2.9)

We assume that |uz|, |uθ| ≤ 1. Thus, the control region is U = [−1, 1]2 and (uz, uθ) ∈ U .

The cost functional J ′ to be minimized is time, i.e. J ′(u) =
∫ T
0 dt. For every pair of

initial and goal configurations, we seek an admissible control, i.e. a measurable function

u : [0, T ] → U , that minimizes J ′ while transferring the initial configuration to the goal

configuration. Without loss of generality we may assume, throughout this dissertation,

that the initial configuration of the system is (0, 0, 0, 0) ∈ C′. We also denote the goal

configuration by (xg, yg, zg, θg). Throughout the dissertation, sgn is the sign function.
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Figure 2.3: The Dubins airplane model.

2.2 Existence of Optimal Trajectories

In this section, we show that our geodesic problems are well-behaved, so that it is viable

to use the Pontryagin Maximum Principle. More precisely, we prove the existence of a

minimum wheel-rotation trajectory for every pair of initial and goal configurations. We

also prove that time-optimal trajectories for the Dubins airplane exist.

2.2.1 Existence of Minimum Wheel-Rotation Trajectories

The differential drive is clearly controllable [13]. Moreover, it can be shown that it is

small-time locally controllable. Hence, there exists at least one trajectory between any pair

of initial and goal configurations, and it is meaningful to discuss the existence of optimal

trajectories. In the following, we will use a version of the Filippov Existence Theorem to

prove the existence of minimum wheel-rotation trajectories.

Theorem 2.2 (Filippov Existence Theorem [38]). Let A ⊂ C be compact, G ⊂ C×C closed,

L(u) continuous on U , and f continuous on A× U . Define Q(q) ⊂ R× TqC ∼= R
4 as

Q(q) = {(z0, z)|∃u ∈ U : z0 ≥ L(u) and z = f(q, u)}. (2.10)

Let ΩA be the set of all admissible trajectory-control pairs (q(t), u(t)) defined on [0, T ] that

for some (q0, q1) ∈ G transfer q0 to q1 while staying in A, i.e. (q(0), q(T )) ∈ G, and

q([0, T ]) ⊂ A. Assume that Q(q) are convex for all q ∈ A, and ΩA is nonempty. The

functional J has an absolute minimum in the nonempty class ΩA.
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From this we derive the following corollary which establishes the existence of minimum

wheel-rotation trajectories for the system described in (2.1).

Corollary 2.3. Minimum wheel-rotation trajectories for the differential-drive exist.

Proof. Fix the initial configuration q0 = (x0, y0, θ0) and the goal configuration q1 = (x1, y1, θ1).

Let A in Theorem 2.2 be A = Cfree ∩ (BT (x0, y0) × S
1), in which BT (x0, y0) is the closed

ball of radius T around (x0, y0) in the plane. Note that T here is both maximum time and

the radius of BT (x0, y0). Assume T is large enough so that (x1, y1) ∈ BT (x0, y0). The pro-

jection of robot configuration onto the x-y plane cannot leave BT (x0, y0) in time T because
√

ẋ2 + ẏ2 ≤ 1. Thus, any trajectory starting at q0 stays in A over the time interval [0, T ].

Choose T such that ΩA 6= ∅ in Theorem 2.2. Let G = {(q0, q1)} ⊂ C × C be the pair of

initial and goal configurations.

It is obvious that A is compact, G closed, L(u) continuous on U , and f continuous on

A× U in this case. Since U is convex and f(q, ·) is a linear transformation, f(q, U) is also

convex. The fact that L(·) is a convex function helps to show Q(q) is convex for all q. Thus,

Theorem 2.2 guarantees the existence of a minimum wheel-rotation trajectory-control pair

(qT (t), uT (t)) in ΩA. Let JT = J(uT ), and let τ be the time of qT . In that case, τ ≤ T

because (qT (t), uT (t)) is in ΩA. Since L ≤ 1 along any trajectory, JT ≤ τ ≤ T .

Now let the time duration be 2T and A′ = Cfree∩(B2T (x0, y0)×S
1). Using Theorem 2.2

again, ΩA′ contains a minimum wheel-rotation trajectory-control pair (q2T (t), u2T (t)). Let

J2T = J(u2T ). Note that J2T ≤ JT because all elements of ΩA are contained in ΩA′ . Any

trajectory-control pair that is not in ΩA′ takes at least 2T time. Observe that 1/2 ≤ L along

any trajectory because at least one input is saturated. Hence, the cost of any trajectory-

control pair that is not in ΩA′ is at least 2T/2 = T . Note that J2T ≤ JT ≤ T . Thus, q2T (t)

is an absolute minimum wheel-rotation trajectory over all trajectories.

2.2.2 Existence of Time-optimal Trajectories for the Dubins Airplane

The Dubins airplane is an extension of the Dubins car by adding a configuration variable

for altitude. Since the altitude variable and input are decoupled from the Dubins car, the
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controllability of the Dubins airplane follows from that of the Dubins car. Hence, there

exists at least one trajectory between any pair of initial and goal configurations, and it

is meaningful to discuss the existence of optimal trajectories. We again use the Filippov

Theorem to prove the existence of time-optimal trajectories.

Theorem 2.4 (Filippov Existence Theorem [38]). Let A ⊂ C′ be compact, G ⊂ C′ × C′

closed, and k continuous on A× U . Define Q(p) ⊂ TpC
′ ∼= R

4 as

Q(p) = {z|∃u ∈ U : z = k(p, u)}. (2.11)

Let ΩA be the set of all admissible trajectories p(t) defined on [0, T ] that for some (p0, p1) ∈ G

transfer p0 to p1 while staying in A, i.e. (p(0), p(T )) ∈ G, and p([0, T ]) ⊂ A. Assume that

Q(p) are convex for all p ∈ A, and ΩA is nonempty. The functional J ′ has an absolute

minimum in the nonempty class ΩA.

The existence of time-optimal trajectories follows from the theorem above in a similar

way as for the differential drive. Fix the initial configuration p0 = (x0, y0, z0, θ0) and the

goal configuration p1 = (x1, y1, z1, θ1). Let A = BT (x0, y0)× [z0 − T, z0 + T ]× S
1, in which

BT (x0, y0) is the closed ball of radius T around (x0, y0) in the plane. Note that T here is

both the duration of the trajectory and the radius of BT (x0, y0). Let G = {(p0, p1)}, and

choose T such that ΩA 6= ∅. It is obvious that A is compact, G closed, and k continuous on

A×U in this case. Since U is convex and k(p, ·) is a linear transformation, Q(p) = k(p, U)

is also convex. Since ΩA contains any trajectory that transfers p0 to p1 in time T , the

theorem above guarantees the existence of a time-optimal trajectory.

2.3 Pontryagin Maximum Principle and Jump Condition

This section barely affords a compact summary of celebrated Pontryagin’s results in opti-

mal control. Since that much is enough for the rest of this dissertation, curious reader is

advised to read the original monograph written by Pontryagin, Boltyanskii, Gamkrelidze,

and Mishchenko [141]. We formulate a general optimal control problem, and we state the

Pontryagin Maximum Principle for it. We also consider the case in which the state space
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of the system is constrained. We state the Pontryagin Maximum Principle and Jump Con-

dition for the constrained problem as well. Please note that all of the notations are limited

to this section, and not used in the rest of this dissertation. Throughout this section, we

consider the following system:

dx

dt
= f(x, u) = (f1(x, u), f2(x, u), . . . , fn(x, u)), (2.12)

in which x = (x1, x2, . . . , xn) ∈ X, where the state space X ⊂ R
n is an open set, and

u ∈ U ⊂ R
m.

2.3.1 Statement of the Problem

We assume in (2.12) f is continuous in x and u, and continuously differentiable with respect

to x. Equivalently, f i(x, u), ∂f i(x, u)/∂xj are continuous on X ×U for i, j = 1, 2, . . . , n. A

cost function f0(x, u) is given. We assume f0 is continuous in x and u, and continuously

differentiable in x. Two points x0 and x1 are given in the state space X. We seek an

admissible control, i.e. a measurable function u : [0, T ]→ U , that minimizes

J =

∫ T

0
f0(x(t), u(t))dt (2.13)

while transferring x0 to x1. Here, x(t) is the solution of (2.12) with initial condition x(0) =

x0 corresponding to the control u(t), and T is such that x(T ) = x1. An optimal control

corresponding to a transition from x0 to x1 is the control u(t) at which the minimum of J

is achieved. Note that optimal control need not always exist.

2.3.2 Maximum Principle

To state the maximum principle, we consider an auxiliary system of equations

dλi

dt
= −

n
∑

k=0

∂fk(x(t), u(t))

∂xi
λk(t), i = 1, 2, . . . , n, (2.14)
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in which λ0 ∈ R is a constant and λ = (λ0, λ1, . . . , λn) ∈ R
n+1 is called adjoint. Note that

by (2.14), λ(t) is uniquely determined if a trajectory-control pair (x(t), u(t)) and the initial

condition λ(0) are given. Define a function H : R
n+1 ×X × U → R as

H(λ, x, u) = 〈λ, (f0, f)〉 =
n

∑

k=0

λkf
k(x, u). (2.15)

It is clear that (2.14) and (2.12) can be rewritten as

dλi

dt
= −

∂H

∂xi
(λ(t), x(t), u(t)), i = 1, 2, . . . , n, (2.16)

and

dxi

dt
= f i(x, u) =

∂H

∂λi
(λ(t), x(t), u(t)), i = 1, 2, . . . , n, (2.17)

in which case H plays the role of a Hamiltonian function. For constant values of λ and

x, the Hamiltonian H becomes a function of the parameter u. We denote the least upper

bound of the values of this function by

M(λ, x) = sup
u∈U

H(λ, x, u). (2.18)

Theorem 2.5 (Pontryagin Maximum Principle [141]). Let x(t) be a trajectory for the sys-

tem (2.12) defined on [0, T ] associated with control u(t). For u(t) to be optimal, it is neces-

sary that there exist a nonzero continuous vector-valued adjoint function λ(t) corresponding

to (x(t), u(t)) through (2.16), such that λ0 ≤ 0,

H(λ(t), x(t), u(t)) = M(λ(t), x(t)), (2.19)

and

M(λ(t), x(t)) = 0, for t ∈ [0, T ]. (2.20)

26



2.3.3 Constrained Maximum Principle

In Section 2.3.2, we assumed that the state space X is an open subet of R
n. New difficulties

arise when we confine the state space to a closed set. Here, we confine x to F ⊂ X, a closed

region whose boundary is a piecewise smooth hypersurface. We consider only those optimal

trajectories that can be split into a finite number of sections each of which lies either entirely

on a smooth piece of the boundary of F or entirely in the interior of F . Those sections

of the optimal trajectory that lie in the interior of F satisfy the unconstrained maximum

principle in Section 2.3.2. Those sections that lie entirely on the boundary of F satisfy

a constrained maximum principle stated in this section. Finally, every pair of adjacent

sections satisfy a certain condition (characterizing jumps in the adjoint λ) which is called

the jump condition. We present the jump condition in Section 2.3.4.

First, we give the required definitions and notions. Let g : X → R be a smooth function

such that the inequality g(x) ≤ 0 locally defines F near the boundary. We assume g has

continuous second partial derivatives near the boundary g(x) = 0, and the vector ∂g/∂x

does now vanish anywhere on the boundary. Let

p(x, u) = 〈
∂g

∂x
, f(x, u)〉 =

n
∑

k=1

∂g

∂xk
fk(x, u), (2.21)

and H and M be defined as in Section 2.3.2.

Theorem 2.6 (Constrained Maximum Principle [141]). Let x(t) be a trajectory for the

system (2.12) defined on [0, T ] associated with control u(t). Assume x(t) lies entirely on the

boundary of F . For u(t) to be optimal, it is necessary that there exist a nonzero continuous

vector-valued adjoint function λ(t) and a piecewise continuous function η(t) such that λ0 =

const. ≤ 0,

dλi

dt
= −

∂H(λ(t), x(t), u(t))

∂xi
+ η(t)

∂p(x(t), u(t))

∂xi
, i = 1, 2, . . . , n, (2.22)

H(λ(t), x(t), u(t)) = M(λ(t), x(t)) = 0, for t ∈ [0, T ], (2.23)
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and

dη

dt
≤ 0 (2.24)

wherever dη/dt exists.

2.3.4 Jump Condition

An optimal trajectory in the closed region F lies partly in the interior of F and partly on

the boundary. Those sections of the optimal trajectory that lie in the interior of F must

satisfy Theorem 2.5. Those sections of the optimal trajectory that lie on the boundary

of F must satisfy Theorem 2.6. Those theorems guarantee the existence of an adjoint for

each section. In the following theorem, adjoints of two adjacent sections are related to one

another.

Theorem 2.7 (Pontryagin Jump Condition [141]). Let (x(t), u(t)) be an optimal trajectory-

control pair defined on [0, T ] for the constrained problem, i.e. x(t) ∈ F . Suppose τ ∈ [0, T ]

is such that x(τ) is on the boundary of F , and for σ > 0 each of x(]τ−σ, τ [) and x(]τ, τ +σ[)

lies either entirely in the interior of F or entirely on the boundary of F , locally defined by

g(x) = 0. Let λ(τ−) and λ(τ+) be the left and the right limits of the adjoint λ respectively.

In that case, the adjoints can be chosen so that either

λ0(τ
+) = λ0(τ

−), (2.25)

λi(τ
+) = λi(τ

−) + µ
∂g

∂xi
(x(τ)) (2.26)

or

λ0(τ
−) = 0, (2.27)

λi(τ
−) + µ

∂g

∂xi
(x(τ)) = 0, µ 6= 0, (2.28)

for i = 1, 2, . . . , n and some constant µ. Moreover, (2.26) is equivalent to λ(τ+) = λ(τ−) if

x([τ, τ + σ[) lies on the boundary.
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2.4 Visibility Graph

This section defines a visibility graph among polygonal obstacles and presents Lee’s algo-

rithm to compute it [106]. For a detailed presentation of the algorithm see [52]. Lee’s

algorithm has O(n2 log n) time complexity, in which n is the number of obstacle vertices.

An optimal algorithm was given by Ghosh and Mount which runs in O(n log n + k) time,

in which k is the number of edges of the visibility graph [66]. We choose Lee’s algorithm

here because it is more intuitive. We will refer to this section in Chapters 4 and 6.

To define visibility graph, suppose we are given two points pinit and pgoal and a set S

of disjoint polygonal obstacles in the Euclidean plane. Lemma 15.1 of [52] which follows,

characterizes shortest collision-free paths from pinit to pgoal.

Lemma 2.8 ([52]). Any shortest path between pinit and pgoal among obstacles S is a

piecewise-linear (polygonal) path whose inner vertices are vertices of S.

To find a shortest path, we construct a network of paths which is called the visibility

graph of S. Vertices of the visibility graph are vertices of S. We say two vertices v and

w can see each other if the straight line segment between v and w does not intersect the

interior of any obstacle in S. There is an edge (v,w) in the visibility graph if v and w can

see each other. In that case, the line segment that connects v and w is called a visibility

edge. Note that obstacle edges in S are visibility edges. We add pinit and pgoal as vertices

to the visibility graph, and add visibility edges between them and obstacle vertices. Lemma

2.8 shows that any shortest path between pinit and pgoal must lie on the visibility graph.

Once the visibility graph is computed, a graph shortest path algorithm such as Dijkstra’s

algorithm gives the solution. Figure 2.4 shows a visibility graph of two obstacles and the

shortest path between pinit and pgoal.

2.4.1 Computing the Visibility Graph

To compute the visibility graph G = (V,E), we need to find pairs of vertices that can see

each other. For every pair we have to test whether the straight line segment connecting

them is collision-free. A näıve test takes O(n) time, in which n denotes the number of

obstacle vertices. Therefore, a näıve algorithm has O(n3) time complexity. Lee’s algorithm
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pinit

pgoal

Figure 2.4: A visibility graph.

v4

v6

v3

v1

v7

v5

v2

w

Figure 2.5: The sequence of vertices in a rotational counterclockwise plane sweep centered
at w.

concentrates on one vertex at a time and performs a rotational counterclockwise plane sweep

to compute its visibility edges. In the following, let w be a vertex of the visibility graph for

which the algorithm computes visibility edges.

For each v ∈ V different from w, let αw(v) be the counterclockwise angle that the line

from w to v makes with the positive x-axis. Sort V ascendingly according to αw. In the

case of equal entries, sort according to the distance from w. Let v1, . . . , vn−1 be the sorted

list. Figure 2.5 illustrates an example. Determine whether v1 is visible from w and find

those obstacle edges that intersect the half-line that emanates from w and passes through

v1. Sort them according to their distance from w. Consider only those edges incident to v1
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T

Figure 2.6: Those obstacle edges that intersect the segment w to v1 and the search tree T .

that are on the counterclockwise side of the half-line from w to v1. Let the sorted list be

e1, . . . , em. Store ei in order from left to right in the leaves of a balanced binary search tree

T . An inner node of T is the rightmost leaf of its left subtree. Figure 2.6 demonstrates an

example. In the algorithm, T maintains a sorted list of candidate edges that may obstruct

visibility of w. For i = 2 to n− 1, do the following two steps:

1. Test if vi is visible from w. This test can be done by searching T . We will describe

below how to do that.

2. Insert into T those obstacle edges incident to vi that lie on the counterclockwise side

of the half-line from w to vi. Delete from T those obstacle edges incident to vi that

lie on the clockwise side of the half-line.

To determine whether vi and w can see each other, first verify that the line segment from w

to vi does not intersect the interior of the obstacle of which vi is a vertex. Suppose vi−1 is

not on the segment w to vi. In that case, search T to find its leftmost leaf e. If e does not

intersect the segment from w to vi, then w and vi can see each other. Now suppose vi−1 is

on the segment w to vi. If vi−1 cannot see w, then vi evidently cannot see w. If vi−1 can

see w, determine whether in T there is an edge that intersects the segment from vi−1 to vi.

It is obvious that the two steps above take O(log n) time. Therefore, computing visibility

edges for each w takes O(n log n) time, and the whole algorithm runs in O(n2 log n) time.
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2.5 Summary

In this chapter, we first defined minimum wheel-rotation for the differential drive. We

then introduced the Dubins airplane and proved the existence of optimal paths for the two

problems. We gave a compact summary of the Pontryagin Maximum Principle and Jump

Condition. Finally, we presented Lee’s visibility graph algorithm. The Pontryagin Maxi-

mum Principle and the visibility graph are the main tools that we use in this dissertation.
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Chapter 3

Minimum Wheel-Rotation Paths

for the Differential Drive

This chapter derives the family of 52 minimum wheel-rotation trajectories for a differential-

drive mobile robot in the plane without obstacles. The shortest paths are composed of

rotation in place, straight line, and swing segments (one wheel stationary and the other

rolling). Twenty eight different minimum wheel-rotation trajectories are identified that are

maximal with respect to subpath partial order. Up to symmetry, they are in 6 distinct

classes. Although there are some numerical optimal control algorithms that can be utilized

to solve the problem, a complete mathematical characterization of shortest paths, in the

sense of Dubins and Reeds-Shepp curves, is helpful in comparing different mechanisms,

computing a nonholonomic metric for motion planning algorithms, and building a local

motion planner. In addition, we will use our analysis here to characterize minimum wheel-

rotation paths among obstacles in Chapter 4.

The problem was precisely defined in Section 2.1.1. We proved existence of minimum

wheel-rotation trajectories in Section 2.2.1. It is then plausible to apply the Pontryagin

Maximum Principle as a necessary condition, which was reviewed in Section 2.3. The

analysis is completed by our geometric arguments which rule out non-optimal trajectories.

We prove that minimum time for the convexified Reeds-Shepp car [164] is equal to minimum

wheel-rotation for the differential drive, and the two families of optimal curves are identical.

As of writing this dissertation, it is unknown whether there is a proof for this fact that does

not require optimal control tools. This chapter was a joint work with Steven M. LaValle,

Devin J. Balkcom, and Matthew T. Mason [44, 45].
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(A)

(B)

(C)

(D)

(E)

(F)

Figure 3.1: Minimum wheel-rotation trajectories up to symmetry: (A) and (B) are com-
posed of two swings, straight, and one or two swings respectively. (C) and (D) are composed
of four alternating swings. (E) is composed of swing, rotation in place, and swing. (F) is
composed of rotation in place, swing, and rotation in place.
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3.1 Related Work

Sussmann and Tang proposed a framework, based on the Pontryagin Maximum Principle

[141], for solving shortest path problems for mobile robots [164]. Their approach brought the

power of the Pontryagin Maximum Principle to help researchers and proved to be successful.

In their template, one first proves that optimal paths exist. It is then viable to apply the

necessary condition of the Pontryagin Maximum Principle. The geometric interpretation of

the Pontryagin Maximum Principle leads to geometric arguments that rule out some non-

optimal trajectories. The remaining trajectories are then filtered through a problem-specific

argument. Usually, the last step is the most difficult one.

The approach that we use to derive optimal trajectories is similar to the one used

by Sussmann and Tang [164], Souères, Boissonnat and Laumond [160, 161], Chyba and

Sekhavat [49], and Balkcom and Mason [13]. However, we give specific geometric arguments

to rule out non-optimal trajectories. In Section 2.2.1, we proved existence of minimum

wheel-rotation trajectories by using Filippov’s theorem [38]. We follow the template by

applying the Pontryagin Maximum Principle and deriving its geometric interpretations.

This step filters out some non-optimal trajectories. The remaining finite set of candidates

are compared with each other to find the optimal ones.

3.2 Necessary Conditions

Since we proved the existence of optimal trajectories, it is viable now to apply the Pontryagin

Maximum Principle which is a necessary condition for optimality.

3.2.1 Pontryagin Maximum Principle

Let the Hamiltonian H : R
3 × C × U → R be

H(λ, q, u) = 〈λ, q̇〉+ λ0L(u) (3.1)

in which λ0 is a constant. According to the Pontryagin Maximum Principle [141], which

was summarized in Section 2.3, for every optimal trajectory q(t) defined on [0, T ] and
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associated with control u(t), there exists a constant λ0 ≤ 0 and an absolutely continuous

vector-valued adjoint function λ(t), that is nonzero if λ0 = 0, with the following properties

along the optimal trajectory:

λ̇ = −
∂

∂q
H, (3.2)

H(λ(t), q(t), u(t)) = max
z∈U

H(λ(t), q(t), z), (3.3)

H(λ(t), q(t), u(t)) ≡ 0. (3.4)

Definition 3.1. An extremal is a trajectory q(t) that satisfies the conditions of the Pon-

tryagin Maximum Principle. Also, an extremal for which λ0 = 0 is called abnormal.

Let the switching functions be

ϕ1 = 〈λ, f1〉 and ϕ2 = 〈λ, f2〉 , (3.5)

in which f1 and f2 are given by (2.2). We rewrite (3.1) as H = u1ϕ1+u2ϕ2+λ0L. The Pon-

tryagin Maximum Principle implies that an optimal trajectory is also an extremal ; however,

the converse is not necessarily true. Throughout the current section, we characterize all

extremals because the optimal trajectories are among them. In the following sections, we

will provide more restrictive conditions for optimality and we will rule out all non-optimal

ones.

3.2.2 Switching Structure Equations

Lemma 3.1 (Sussmann and Tang [164]). Let fk be a smooth vector field in the tangent

bundle of the configuration space TC, and let q(t) be an extremal associated with control

u(t) and adjoint vector λ(t). Let ϕk be defined as ϕk(t) = 〈λ(t), fk(q(t))〉. It follows that

ϕ̇k = u1 〈λ, [f1, fk]〉+ u2 〈λ, [f2, fk]〉 . (3.6)

Lemma 3.1 reveals valuable information by relating the structure of the Lie algebra to the

structure of ϕi functions. To complete the Lie closure of {f1, f2}, we introduce f3 as the
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Lie bracket of f1 and f2:

f3 = [f1, f2] =
1

2b













sin θ

− cos θ

0













. (3.7)

Let ϕ3(t) = 〈λ(t), f3(q(t))〉 be the switching function associated with f3. Lemma 3.1 implies

the structure of switching functions as follows [13]:

ϕ̇1 = −u2ϕ3, ϕ̇2 = u1ϕ3, ϕ̇3 =
1

4b2
(−u1 + u2)(ϕ1 + ϕ2). (3.8)

The vectors fi are linearly independent. Consequently, {f1(q), f2(q), f3(q)} forms a basis

for TqC. As an immediate consequence of the Pontryagin Maximum Principle and Lemma

3.1, the following proposition holds.

Proposition 3.2. An abnormal extremal is motionless.

Proof. If λ0 = 0, then (3.4) implies u1ϕ1 + u2ϕ2 ≡ 0. This means |ϕ1| ≡ |ϕ2| ≡ 0 because

by maximization of the Hamiltonian, we must have uiϕi = |ϕi| for i = 1, 2. For a detailed

argument, see [13]. Consequently, ϕ1 and ϕ2 are constantly zero, and ϕ̇1 ≡ ϕ̇2 ≡ 0. In

this case, |ϕ1| + |ϕ2| + |ϕ3| 6= 0 because {f1, f2, f3} forms a basis for tangent space of the

configuration space, and ϕi’s are the coordinates of a nonzero vector λ(t) in this basis.

Thus, ϕ3 6= 0 and (3.8) imply u1 ≡ u2 ≡ 0.

3.2.3 Extremals

Having dealt with abnormal extremals in Proposition 3.2, we may now, without loss of

generality, scale the Hamiltonian (3.1) so that λ0 = −2. More precisely, the Pontryagin

Maximum Principle conditions are valid if we replace λ(t) by −2λ(t)
λ0

and λ0 by −2 in (3.1).

We will assume that λ0 = −2 for the rest of the chapter. In that case, the Hamiltonian has

the simple form

H = u1ϕ1 + u2ϕ2 − (|u1|+ |u2|). (3.9)
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Equation (3.2) can be solved for λ to obtain

λ(t) =













c1

c2

c1y − c2x + c3













, (3.10)

in which c1, c2, and c3 are constants. Let i, j ∈ {1, 2} throughout the rest of the chapter.

Definition 3.2. An extremal for which |ϕi(t)| = 1 over some positive-length interval of

time is called singular, for some i = 1, 2.

In Lemma 3.3, we will show that a non-singular extremal is motionless. We will also show

that there are two categories of singular extremals depending on whether or not c2
1 +c2

2 = 0.

The first category corresponds to c2
1 + c2

2 6= 0, and consists of all singular extremals that are

composed of a number of swing (ui = 0) and straight (u1 = u2) intervals. Such extremals

will be called tight. The second category corresponds to c2
1 + c2

2 = 0. Such extremals will

be called loose.

Lemma 3.3. Let q(t) be an extremal associated with the control u(t) = (u1(t), u2(t)),

adjoint vector function λ(t), and switching functions ϕi(t). Moreover, assume q(t) is not

motionless. In that case, the following hold:

(i) |ϕi(t)| ≤ 1.

(ii)

ui(t) ∈























[0, 1] if ϕi(t) = 1

{0} if |ϕi(t)| < 1

[−1, 0] if ϕi(t) = −1

. (3.11)

(iii) If c2
1 + c2

2 6= 0 and |ϕ1| = |ϕ2| = 1 over some interval [t1, t2], then u1 = u2, and

ϕ1 = ϕ2.

(iv) If c2
1 +c2

2 6= 0 and |ϕj | < |ϕi| = 1 over a time interval [t1, t2], then uj = 0 and |ui| = 1,

in which j 6= i.
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(v) If c1 = c2 = 0, then ϕ1 ≡ −ϕ2, and u1u2 ≤ 0. In other words, the wheels move in

opposite directions.

Proof. (i) By inspection of (3.9), if |ϕi| > 1, there exist feasible controls yielding H >

0. This contradicts the maximum principle (3.3) and (3.4), which states that the

maximum of H is zero.

(ii) If |ϕi| < 1, then (3.3) and (3.9) implies ui = 0. In a similar way, if ϕi = 1, then

ui ∈ [0, 1], and if ϕi = −1, then ui ∈ [−1, 0].

(iii) Assume ϕ1 = −ϕ2. From (2.2), (3.5), and (3.10) it follows that c1 cos θ + c2 sin θ ≡ 0.

Differentiate this equation to obtain θ̇ ≡ 0 because −c1 sin θ + c2 cos θ 6= 0. Thus,

2bθ̇ = u1 − u2 = 0, and (3.11) implies u1 = u2 = 0, which is not possible because q(t)

is not motionless.

(iv) This follows from (3.11).

(v) In that case, ϕ1 ≡ −ϕ2 by (2.2), (3.5), and (3.10). It follows from (3.11) that u1u2 ≤ 0.

Geometric interpretation of tight extremals in Section 3.2.4 will help to show that the

number of switchings along a tight extremal is finite. Along a tight extremal we can assume

u1 = 0, u2 ∈ {1,−1} or u1 ∈ {1,−1}, u2 = 0 on swing segments, and u1 = u2 ∈ {1,−1} on

straight segments because at least one of the inputs is saturated. Thus, inputs are always

either zero or bang ui ∈ {1, 0,−1} along tight extremals. In Section 3.3.3, we will show

that there may exist many wheel-rotation equivalent loose extremals, and for an appropriate

choice of representative loose extremals, the inputs are always either zero or bang. In this

section, we finished an elementary characterization of extremals. We have identified three

main types of extremals:

1. non-singular: u1 ≡ u2 ≡ 0 (i.e. motionless)

2. tight singular: composed of a finite number of swing and straight segments

3. loose singular: u1u2 ≤ 0, ϕ1 ≡ −ϕ2, and |ϕ1| ≡ |ϕ2| ≡ 1.
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3.2.4 Geometric Interpretation of Tight Extremals

Let (x1, y1) and (x2, y2) be the coordinates of the left and the right wheel respectively. In

that case,






x1

y1






=







x− b sin θ

y + b cos θ













x2

y2






=







x + b sin θ

y − b cos θ






. (3.12)

Define functions γ1(x, y) and γ2(x, y) as

γ1(x, y) = c1y − c2x + c3 − 2b, (3.13)

γ2(x, y) = c1y − c2x + c3 + 2b. (3.14)

Taking (2.2), (3.5), (3.10), (3.12), (3.13), and (3.14) into account, we obtain

ϕ1 = −
1

2b
γ2(x2, y2) + 1 = −

1

2b
γ1(x2, y2)− 1, (3.15)

ϕ2 =
1

2b
γ1(x1, y1) + 1 =

1

2b
γ2(x1, y1)− 1. (3.16)

Note that c2
1 + c2

2 > 0, and consider the parallel lines ℓ1 : γ1(x, y) = 0 and ℓ2 : γ2(x, y) = 0

in the robot x-y plane. The value of γi at each point P ∈ R
2 determines d(P, ℓi) scaled by

√

c2
1 + c2

2 for i = 1, 2, in which d(P, ℓ) is the signed distance of point P from a line ℓ ⊂ R
2.

Since the base distance b of the robot is positive, γ2 > γ1 everywhere in the plane. Thus, ℓ1

and ℓ2 cut the plane into five disjoint subsets (Figure 3.2): S+, ℓ1, S±, ℓ2, and S− in which

S+ = {(x, y) ∈ R
2| γ2(x, y) > γ1(x, y) > 0} (3.17)

S± = {(x, y) ∈ R
2| γ2(x, y) > 0 > γ1(x, y)} (3.18)

S− = {(x, y) ∈ R
2| 0 > γ2(x, y) > γ1(x, y)}. (3.19)

Using Lemma 3.3 and (3.15) and (3.16), along a tight extremal γ1(xi, yi) ≤ 0 ≤ γ2(xi, yi)

for i = 1, 2. Thus, the robot always stays in the band ℓ1 ∪ S± ∪ ℓ2; see Figure 3.2. By

40



S−

ℓ2

S±

ℓ1
S+

Figure 3.2: The robot stays between two lines ℓ1 and ℓ2 along a tight extremal.

appropriately substituting in (3.11), we obtain

u1 ∈























[−1, 0] if wheel 2 ∈ ℓ1

{0} if wheel 2 ∈ S±

[0, 1] if wheel 2 ∈ ℓ2

(3.20)

u2 ∈























[0, 1] if wheel 1 ∈ ℓ1

{0} if wheel 1 ∈ S±

[−1, 0] if wheel 1 ∈ ℓ2

. (3.21)

3.3 Characterization of Extremals

3.3.1 Symmetries

Assume (q(t), u(t)) is a minimum wheel-rotation trajectory-control pair that is defined on

[0, T ]. Let q̃(t) be the trajectory associated with control u(T − t), q̄(t) the trajectory associ-

ated with control −u(t), and q̂(t) the trajectory associated with control û(t) = (u2(t), u1(t)).

Define the operators O1, O2, and O3 acting on trajectory-control pairs by

O1 : (q(t), u(t)) 7→ (q̃(t), u(T − t)) (3.22)

O2 : (q(t), u(t)) 7→ (q̄(t),−u(t)) (3.23)

O3 : (q(t), u(t)) 7→ (q̂(t), û(t)). (3.24)
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π
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L−
π
2

R−
π
2

π

2
, ℓ1

π

Figure 3.3: F1 is a finite state machine whose language is the tight extremals for which the
distance between ℓ1 and ℓ2 is 2b (Case 1).

Due to symmetries, O1(q(t), u(t)), O2(q(t), u(t)), and O3(q(t), u(t)) are also minimum

wheel-rotation trajectories. O1 corresponds to reversing the extremal in time, O2 corre-

sponds to reversing the inputs, and O3 corresponds to exchanging the left and the right

wheels.

3.3.2 Characterization of Tight Extremals

In the following we give only the representatives of symmetric families of tight extremals.

We will use L, R, and S to denote swing around the left wheel, the right wheel, and

straight line motions, respectively. In cases where the directions must be specified, we

use a superscript: − is clockwise, + is counter-clockwise, + is forward, and − is backward.

Otherwise, the direction of swing is constant throughout the extremal. The symbol ∗ means

zero or more copies of the base expression. Subscripts are non-negative angles.

Depending on the distance between ℓ1 and ℓ2 we identify three different types of tight ex-

tremals. For each type, we define a finite state machine to present extremals more precisely.

Case 1: Let d(ℓ1, ℓ2) = 2b. Besides swing, the robot can move straight forward and back-

ward by keeping the wheels on ℓi’s. In this case, the extremals are composed of a sequence

of swing and straight segments. In general, there can be an arbitrary number of swing and

straight segments. Since the straight segments can be translated and merged together, a
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S±

ℓ2

ℓ1

S−

S+

Figure 3.4: An F1 trajectory.

representative subclass with only one straight segment is described by the following forms:

• (R−
π L−

π )∗R−
π
2

S+R−
π
2

(L−
π R−

π )∗

• (R−
π L−

π )∗R−
π
2

S+L+
π
2

(R+
π L+

π )∗.

We define a finite state machine F1 to present such extremals more precisely. Let

Q1 = {0, (
π

2
, ℓ1), (

π

2
, ℓ2), π, (

3π

2
, ℓ1), (

3π

2
, ℓ2)} (3.25)

be the set of states. States are the robot orientations together with its position, i.e. whether

it lies on the line ℓ1 or ℓ2. Let the input alphabet be Σ1 = {S+,S−,L+
π
2

,L−
π
2

,R+
π
2

,R−
π
2

}. De-

fine F1 by the transition function that is depicted in Figure 3.3. If robot starts in one of

the states in Q1, it has to move according to F1. If the initial configuration of robot is none

of the states, the robot performs a compliant Lα or Rα motion, in which 0 ≤ α < π
2 , to

reach one of the states and continues according to F1. In general, there can be an arbitrary

number of swing and straight segments. Since the straight segments can be translated and

merged together, a representative subclass with only one straight segment suffices for giving

all such minimum wheel-rotation trajectories. For optimal representatives of this class see

(A) and (B) in Figure 3.1. We call such tight extremals type I.

Case 2: Let d(ℓ1, ℓ2) > 2b. The robot cannot move straight because it cannot keep the

wheels on the lines ℓi over some interval of time. Thus, such extremals are of the form
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3π
2 , ℓ1

R+
π

L+
π

π
2 , ℓ2

3π
2 , ℓ2

L−π

R−π

π
2 , ℓ1

Figure 3.5: F2 is a finite state machine whose language is the tight extremals for which the
distance between ℓ1 and ℓ2 is greater than 2b (Case 2).

S±

S+

S−

ℓ2

ℓ1

Figure 3.6: An F2 trajectory.

(RπLπ)∗. Note that these extremals are subpaths of type I extremals. Again, we define a

finite state machine F2 to present such extremals more precisely. Let

Q2 = {(
π

2
, ℓ1), (

π

2
, ℓ2), (

3π

2
, ℓ1), (

3π

2
, ℓ2)} (3.26)

be the set of states. States are the robot orientations together with its position, i.e. whether

it lies on the line ℓ1 or ℓ2. Let the input alphabet be Σ2 = {L+
π ,L−

π ,R+
π ,R−

π }. Define F2

by the transition function that is depicted in Figure 3.5.

Case 3: Let d(ℓ1, ℓ2) < 2b. In this case, the extremals are of the form (L−
γ R−

γ L+
γ R+

γ )∗ in

which γ ≤ π
2 . Like the two previous cases, we define a finite state machine F3 to present
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π
2 , ℓ2

R+
γ L−γ

R−γ
3π
2 , ℓ1

3π

2
+ γ

3π

2
− γ

3π
2 , ℓ2

L+
γ

L+
γ R−γ

π
2 − γ

L−γR+
γ

π
2 , ℓ1

π
2 + γ

Figure 3.7: F3 is a finite state machine whose language is the tight extremals for which the
distance between ℓ1 and ℓ2 is less than 2b (Case 3).

S±

ℓ2

ℓ1

S−

S+

Figure 3.8: An F3 trajectory.
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such extremals more precisely. Let

Q3 = {
π

2
− γ, (

π

2
, ℓ1), (

π

2
, ℓ2),

π

2
+ γ,

3π

2
− γ, (

3π

2
, ℓ1), (

3π

2
, ℓ2),

3π

2
+ γ} (3.27)

be the set of states. States are the robot orientations together with its position, i.e. whether

it lies on the line ℓ1 or ℓ2. Let the input alphabet be Σ3 = {L+
γ ,L−

γ ,R+
γ ,R−

γ }. Define F3

by the transition function that is depicted in Figure 3.7. For optimal representatives of this

class see (C) and (D) in Figure 3.1. We call such tight extremals type II.

Lemma 3.4. Let q(t) be a tight extremal associated with the control u(t) that transfers

(x0, y0, θ0) to (x1, y1, θ1). In this case

J(u) = l =

∫ T

0
(
√

ẋ2 + ẏ2)dt, (3.28)

i.e. the cost J(u) is the length of the projection of q(t) onto the x-y plane.

Proof. Since 2
√

ẋ2 + ẏ2 =
√

(u1 + u2)2 = |u1+u2|, it is enough to show |u1+u2| = |u1|+|u2|

along a tight extremal. Tight extremals are composed of swing and straight segments. Over

a swing segment one of the inputs is zero; for instance u1 = 0 in which case |u1 + u2| =

|u2| = |u1|+ |u2|. Over a straight segment u1 = u2 and |u1 + u2| = 2|u1| = |u1|+ |u2|.

3.3.3 Characterization of Loose Extremals

The Pontryagin Maximum Principle does not give a restrictive enough extremal control

law for loose extremals. In fact, the only constraint on loose extremals is that u1,−u2 ∈

[−1, 0] or u1,−u2 ∈ [0, 1]. Thus, a variety of non-bang-bang controls generate various loose

extremals. For instance, it can be verified that rotation round any point on the axle is a

minimum wheel-rotation trajectory. In this section, we will first show that loose optimal

trajectories can only cover a bounded region of the configuration space around the initial

configuration. There may be different loose extremals that transfer the initial configuration

to the goal configuration. In particular, there may exist different such loose extremals

which have equal wheel rotation. Equivalence of wheel rotation defines equivalence classes
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of loose extremals. We will show in Lemma 3.8 that there exists a representative composed

of rotation in place and swing segments with a known structure, in every equivalence class.

Lemma 3.5. Let q(t) be a loose extremal associated with the control u(t), and let ϑ be the

length of the projection of q(t) onto S
1; in other words,

ϑ =

∫ T

0
|θ̇|dt. (3.29)

In this case we have J(u) = bϑ.

Proof. Since 2b|θ̇| = |u1−u2|, it is enough to show that |u1−u2| = |u1|+ |u2| along a loose

extremal. According to Lemma 3.3, u1u2 ≤ 0 along a loose extremal. Thus, |u1u2| = −u1u2

which means (|u1|+ |u2|)
2 = (u1 − u2)

2. It is obvious then that |u1|+ |u2| = |u1 − u2|.

Lemma 3.6. Let (q(t), u(t)) be a loose trajectory-control pair that tranfers the initial config-

uration (x0, y0, θ0) to the goal configuration (x1, y1, θ1). It follows that J(u) = b|θ1−θ0+2kπ|

for some integer k. Furthermore, if q(t) is optimal, then J(u) ≤ 5bπ.

Proof. According to Lemma 3.5, the cost of a loose extremal is bϑ, in which ϑ is (3.29). In

this case, ϑ = |θ1− θ0 +2kπ| for some integer k and the cost is J(u) = b|θ1− θ0 +2kπ|. For

the second part, suppose q(t) is optimal while |θ1 − θ0 + 2kπ| > 5π. It can geometrically

be shown that
√

(x1 − x0)2 + (y1 − y0)2 ≤ 2bm, in which m is an integer that satisfies the

inequality (m − 1)π < |θ1 − θ0 + 2kπ| ≤ mπ. Since |θ1 − θ0 + 2kπ| > 5π, we have m ≥ 6.

The cost of the trivial trajectory which is composed of rotation in place, going straight, and

again rotation in place is not more than 2bm+ bπ. Thus, we have J(u) = b|θ1− θ0 +2kπ| >

b(m− 1)π > 2bm + bπ because m ≥ 6. This is contradictory to the optimality of q(t).

Corollary 3.7. Starting from an initial configuration, loose optimal trajectories are of

bounded cost and bounded reach in the x-y plane. We call such optimal extremals type III.

Lemma 3.8. Let (q(t), u(t)) be a loose optimal trajectory-control pair that tranfers the

initial configuration q0 to the goal configuration q1. There exists a trajectory-control pair
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π + γ
2

2π −
γ

2

γ
2

P+
π−γ

L+
γ

π − γ
2

P+
π−γ

R+
γ

Figure 3.9: E1 provides a representative subclass of loose extremals in + direction.

γ
2

R−γ P−π−γ

L−γP−π−γ

2π −
γ

2

π + γ
2

π − γ
2

Figure 3.10: E2 provides a representative subclass of loose extremals in − direction.

(q̌(t), ǔ(t)) transferring q0 to q1, in which ǔ is composed of a sequence of alternating rota-

tion in place and swing segments in the same direction. Furthermore, q(t) and q̌(t) have

the same wheel rotation, i.e. J(u) = J(ǔ).

Sketch of proof. Look at the time-optimal trajectories for the system described in (2.1)

with u1 ∈ [−1, 0], u2 ∈ [0, 1] (our claim for the case in which u1 ∈ [0, 1], u2 ∈ [−1, 0] follows

from a similar argument). We know the time-optimal trajectories for this modified system

exist because its input space is convex. Upon applying the Pontryagin Maximum Principle

with the time as the cost functional, the extremals are composed of a sequence of rotation

in place and swing segments. Let (q̌(t), ǔ(t)) be the time optimal trajectory-control pair,

i.e. ǔ is composed of a sequence of rotation in place and swing segments. Lemma 3.5

implies that J(u) = bϑ and J(ǔ) = bϑ̌, in which ϑ and ϑ̌ are as in (3.29). Since ϑ ≡ ±ϑ̌

up to a multiple of 2π, and Lemma 3.6 holds for (q(t), u(t)), we have J(u) = J(ǔ) because

otherwise, it can be verified that ǔ is not time optimal.

We use P to denote rotation in place. In order to present the representative subclass of

loose extremals whose existence is established in Lemma 3.8, we define finite state machines
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Figure 3.11: An E1 trajectory.

E1 and E2. Let 0 ≤ γ ≤ π and Q = {γ
2 , π−γ

2 , π+γ
2 , 2π−γ

2 } be the set of states which represent

the robot orientation. Let the input alphabet be Σ = {L+
γ ,L−

γ ,R+
γ ,R−

γ ,P+
π−γ ,P−

π−γ}.

Define E1 and E2 by the transition functions that are depicted in Figures 3.9 and 3.10

respectively. E1 provides a representative subclass of loose extremals in + direction and E2

in − direction.

3.4 Minimum Wheel-Rotation Trajectories

Eventually, in this section we give type I, II, and III minimum wheel-rotation trajectories

up to symmetries. In Section 3.3.1 we described the symmetries of this problem. In the

following we denote straight segment by S, swinging around right and left wheels by R and

L respectively, and rotation in place by P. Directions are denoted by superscript + and

− whenever it is required, otherwise it is constant throughout the trajectory. Forward and

counter-clockwise are denoted by +, and backward and clockwise by −. Subscripts denote

angles.

Proposition 3.9. Any subpath of an optimal path is necessarily optimal.

Proof. For otherwise, one gets a better path by substituting the optimal alternative for the

subpath, which is a contradiction.

We need to explicitly list only those minimum wheel-rotation trajectories that are max-

imal with respect to the subpath partial order. Other minimum wheel-rotation trajectories

are subpaths of the listed ones and derivable from them. In other words, we will explicitly

characterize only maximally optimal trajectories.
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Table 3.1: Maximal minimum wheel-rotation trajectories sorted by symmetry class

(A) (B)

Base L−
αR−

π
2

S+R−

β L−
αR−

π
2

S+L+
π
2

R+
β

O1 R−

β S+R−
π
2

L−
α R+

β L+
π
2

S+R−
π
2

L−
α

O2 L+
αR+

π
2

S−R+
β L+

αR+
π
2

S−L−
π
2

R−

β

O3 R+
α L+

π
2

S+L+
β R+

αL+
π
2

S+R−
π
2

L−

β

O1 ◦ O2 R+
β S−R+

π
2

L+
α R−

β L−
π
2

S−R+
π
2

L+
α

O1 ◦ O3 L+
β S+L+

π
2

R+
α L−

β R−
π
2

S+L+
π
2

R+
α

O2 ◦ O3 R−
α L−

π
2

S−L−

β R−
αL−

π
2

S−R+
π
2

L+
β

O1 ◦ O2 ◦ O3 L−

β S−L−
π
2

R−
α L+

β R+
π
2

S−L−
π
2

R−
α

α + β ≤ π
2 α + β ≤ 2

(C) (D)

Base L−
αR−

γ L+
γ R+

β L+
αR−

γ L−
γ R+

β

O1 R+
β L+

γ R−
γ L−

α R+
β L−

γ R−
γ L+

α

O2 L+
αR+

γ L−
γ R−

β L−
αR+

γ L+
γ R−

β

O3 R+
α L+

γ R−
γ L−

β R−
αL+

γ R+
γ L−

β

O1 ◦ O2 R−

β L−
γ R+

γ L+
α R−

β L+
γ R+

γ L−
α

O1 ◦ O3 L−

β R−
γ L+

γ R+
α L−

β R+
γ L+

γ R−
α

O2 ◦ O3 R−
α L−

γ R+
γ L+

β R+
αL−

γ R−
γ L+

β

O1 ◦ O2 ◦ O3 L+
β R+

γ L−
γ R−

α L+
β R−

γ L−
γ R+

α

α, β < γ ≤ π
2 α, β < γ ≤ π

2

(E) (F)

Base R+
α P+

γ L+
β P+

αR+
γ P+

β

O1 L+
β P+

γ R+
α P+

β R+
γ P+

α

O2 R−
α P−

γ L−

β P−
αR−

γ P−

β

O3 L−
αP−

γ R−

β P−
αL−

γ P−

β

O1 ◦ O2 L−

β P−
γ R−

α P−

β R−
γ P−

α

O1 ◦ O3 R−

β P−
γ L−

α P−

β L−
γ P−

α

O2 ◦ O3 L+
αP+

γ R+
β P+

αL+
γ P+

β

O1 ◦ O2 ◦ O3 R+
β P+

γ L+
α P+

β L+
γ P+

α

α + γ + β ≤ π α + γ + β ≤ π
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Lemma 3.4 implies that wheel-rotation is equal to the length of the curve that is tra-

versed by the center of robot in the x-y plane along tight extremals. Since equations of

motion of the differential-drive is the same as that of Reeds-Shepp car along a tight ex-

tremal, the center of robot in the x-y plane traverses a Reeds-Shepp curve along a tight

minimum wheel-rotation trajectory. Here we use previous results about Reeds-Shepp curves

in [161] to characterize tight minimum wheel-rotation trajectories.

Lemma 3.10. If α > 0 then RπLα is not minimum wheel-rotation.

Proof. For any β > 0, we first show that LβRπLβ is not optimal. Observe that L−

β R−
π L−

β

has (π + 2β)b wheel rotation. Let e = 4(1 − cos β)b. The trajectory R+
π
2
−βS

−
e R+

π
2
−β has

(π − 2β)b + e wheel rotation. Since 1− cos β ≤ β we must have (π − 2β)b + e ≤ (π + 2β)b.

Second, we show that RπLα is not optimal. Let 0 < ǫ < α be a small positive number

such that 2(1− cos ǫ) < ǫ. We know that such ǫ exists. Let g = 4(1− cos ǫ)b. Consider the

trajectory L+
ǫ R+

π
2
−ǫS

−
g R+

π
2
−ǫ which has the same end configuration as RπLǫ. However, it

has less wheel rotation than RπLǫ because g < 2bǫ. Since any subpath of an optimal path

should be optimal, RπLα is not optimal.

Theorem 3.11. A type I minimum wheel-rotation trajectory has one of the following forms:

• L−
αR−

π
2

S+R−

β

• L−

ζ R−
π
2

S+L+
π
2

R+
γ ,

in which α + β ≤ π
2 and ζ + γ ≤ 2.

Proof. In Section 3.3.2 case 1, we showed that type I extremals are of the following forms:

• (R−
π L−

π )∗R−
π
2

S+R−
π
2

(L−
π R−

π )∗

• (R−
π L−

π )∗R−
π
2

S+L+
π
2

(R+
π L+

π )∗.

Lemma 3.10 shows that if η > 0 then LπRη cannot be minimum wheel-rotation. It is

enough to note that any subpath of an optimal path is necessarily optimal. Hence, the only

possibilities are of the following form:
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• L−
αR−

π
2

S+R−
π
2

L−
η

• L−

ζ R−
π
2

S+L+
π
2

R+
γ ,

in which α, η, ζ, γ < π. Assume α > 0. We claim that η = 0, because a path of type

R+S−R+ is shorter than L−
αR−

π
2

S+R−
π
2

L−
η . Hence, L−

αR−
π
2

S+R−

β is possibly optimal in

which β ≤ π
2 . If α > π

2 , then a path of type R+L+
π
2

S+R− is shorter than L−
αR−

π
2

S+. Thus,

α, β, ζ, γ ≤ π
2 . Also, charaterization of Reeds-Shepp curves of type C|CSC in [161] implies

that α + β ≤ π
2 . Finally, if ζ + γ > 2, then L+

π
2
−ζS

−R−
π
2
−γ is shorter than L−

ζ R−
π
2

S+L+
π
2

R+
γ .

Hence, ζ + γ ≤ 2. For such an optimal trajectory see (A) and (B) in Figure 3.1.

Theorem 3.12. A type II minimum wheel-rotation trajectory has one of the following

forms:

• L−
αR−

γ L+
γ R+

β

• L+
αR−

γ L−
γ R+

β ,

in which 0 ≤ α, β ≤ γ ≤ π
2 .

Proof. In Section 3.3.2 case 3, we showed that type II extremals are of the form

(L−
γ R−

γ L+
γ R+

γ )∗. We prove that a trajectory containing two complete sets of four swings

is not optimal, i.e. R+
γ L−

γ R−
γ L+

γ R+
γ L−

γ R−
γ L+

γ is not optimal. In each set, the amount of

robot displacement in x-y plane is 8b sin2 γ
2 , in which γ is the angle of swings. If 0 < γ < π

4 ,

then let ζ be such that sin2 ζ
2 = 2 sin2 γ

2 . It follows that ζ < 2γ < π
2 . A type II extremal

that is composed of four swings of angle ζ has less wheel rotation. If π
4 ≤ γ ≤ π

2 , then

bπ+16b sin2 γ
2 < 8bγ, and the trivial trajectory which is composed of rotation in place, going

straight, and again rotation in place gives less wheel rotation. A similar argument, based on

what we just showed, proves that L−
γ R−

γ L+
γ R+

γ L−
γ R−

γ L+
γ R+

γ is not minimum wheel-rotation

either. Moreover, Lemma 3.4 implies that wheel-rotation is equal to the length of the curve

that is traversed by the center of robot in the x-y plane along tight extremals. Since the

center of robot in the x-y plane traverses a Reeds-Shepp curve along a tight minimum

wheel-rotation trajectory, the only possibilities [161] are
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• L−
αR−

γ L+
γ R+

β

• L+
αR−

γ L−
γ R+

β ,

in which α, β ≤ γ ≤ π
2 . For such an optimal trajectory see (C) and (D) in Figure 3.1.

Lemma 3.13. If α > 0 then Pπ−γRγPα is not minimum wheel-rotation, in which 0 ≤ γ ≤

π.

Proof. It is enough to note that P−
π−γR

−
γ P−

α has π + α wheel rotation whereas L+
γ P+

π−γ−α

has π − α wheel rotation. Since they connect the same initial and goal configurations, the

former cannot be minimum wheel-rotation.

Lemma 3.14. If 0 ≤ ζ, η ≤ γ ≤ π and ζ + η > γ then RζPπ−γLη is not minimum

wheel-rotation.

Proof. Suppose RζPπ−γLη is minimum wheel-rotation. Let δ = γ − ζ. By assumption

we have 0 ≤ δ < η. We replace the subpath R−

ζ P−
π−γL

−

δ of R−

ζ P−
π−γL

−
η by an equivalent

trajectory L+
δ P+

π−γR
+
ζ to get L+

δ P+
π−γR

+
ζ L−

η−δ. Boundary points and wheel rotation of

this trajectory is equal to boundary points and wheel rotation of the original trajectory

R−

ζ P−
π−γL

−
η . Hence, L+

δ P+
π−γR

+
ζ L−

η−δ is a minimum wheel-rotation trajectory. In partic-

ular, it must satisfy the Pontryagin Maximum Principle. This is a contradiction because

L+
δ P+

π−γR
+
ζ L−

η−δ is not an extremal.

Theorem 3.15. A type III minimum wheel-rotation trajectory is one of the following forms:

• RαPγLβ

• PαRγPβ ,

in which α + γ + β ≤ π.

Proof. In Section 3.3.3, we showed for any loose extremal there is an equivalent trajectory

which is composed of swing and rotation in place, i.e. (RγPπ−γLγPπ−γ)∗. Lemma 3.13

implies that a 4-piece trajectory of this type cannot be minimum wheel-rotation. Thus,

the only possible type III minimum wheel-rotation trajectories are of the following forms:
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Table 3.2: Complete list of minimum wheel-rotation trajectories

Trajectory Range

CαPγCβ α + γ + β ≤ π

PαCγPβ α + γ + β ≤ π

Cα|CγCβ α, β ≤ γ ≤ π
2

CαCγ |Cβ α, β ≤ γ ≤ π
2

CαCγ |CγCβ α, β ≤ γ ≤ π
2

Cα|CγCγ |Cβ α, β ≤ γ ≤ π
2

CαSdCβ α, β ≤ π
2 and 0 ≤ d

CαCπ
2

SdCβ α + β ≤ π
2 and 0 ≤ d

CαSdCπ
2
Cβ α + β ≤ π

2 and 0 ≤ d

LαRπ
2
SdLπ

2
Rβ α + β ≤ 2 and 0 ≤ d

RαLπ
2

SdRπ
2

Lβ α + β ≤ 2 and 0 ≤ d

RζPπ−γLη and PαRγPβ , in which α, β ≤ π−γ and ζ, η ≤ γ. If α+γ+β > π then P−
α R−

γ P−

β

is not minimum wheel-rotation, because P+
π−γ−αR+

γ P+
π−γ−β is shorter. If ζ + η > γ then

Lemma 3.14 proves that RζPπ−γLη is not minimum wheel-rotation. Hence, ζ+(π−γ)+η ≤

π, and by renaming parameters we obtain the result. For such an optimal trajectory see

(E) and (F) in Figure 3.1.

Taking the symmetries in Section 3.3.1 into account, all the maximally optimal trajec-

tories with their symmetric clones are given in Table 3.1. Since the symmetry operators

O1,O2, and O3 commute, we do not need to worry about their order. Let C represent a

swing, L or R, and | represent a change of direction. Let α, β, and γ be non-negative angles.

A complete list of the words that describe all of 52 minimum wheel rotation trajectories is

given in Table 3.2.

We include the following lemma to compare minimum wheel-rotation with optimal time:

Lemma 3.16. Let T ⋆ be the optimal time given in [13] and J⋄ the minimum wheel-rotation.

It follows that 1
2T ⋆ ≤ J⋄ ≤ T ⋆.
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3.5 Relation with the Reeds-Shepp car

Here we show that minimum time for the Reeds-Shepp car is equal to minimum wheel-

rotation for the differential drive. It is enough to show the result for the convexified Reeds-

Shepp car, because minimum time for the convexified Reeds-Shepp car is equal to minimum

time for the Reeds-Shepp car [164]. Moreover, we show that minimum wheel-rotation paths

for the differential drive are exactly minimum time paths for the convexified Reeds-Shepp

car.

The convexified Reeds-Shepp car is the following system with the same configuration

space as that of the differential drive C = R
2 × S

1:

q̇ =













ẋ

ẏ

θ̇













=













v1 cos θ

v1 sin θ

v2

b













, (3.30)

in which v1, v2 ∈ [−1, 1] are the inputs and b is the minimum turning radius. We denote

the vector of inputs (v1, v2) by v.

Any differential drive trajectory is also a feasible trajectory for the convexified Reeds-

Shepp car by the following input transformation

v1 =
u1 + u2

2
, (3.31)

v2 =
u2 − u1

2
. (3.32)

However, the inverse is

u1 = v1 − v2, (3.33)

u2 = v1 + v2. (3.34)

It is clear that the inverse is not a useful transformation because if for example v1 = v2 =

1 then u2 = 2 6∈ [−1, 1]. Hence, we need a more sophisticated analysis than a simple

input transformation. We will show then that the optimal paths for the two problems are
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equivalent up to an input transformation and time reparametrization in the following two

lemmas.

Lemma 3.17. Let q(s) be a trajectory of the differential drive defined on [0, T ] and associ-

ated with control u(s) = (u1(s), u2(s)), where u is piecewise constant and non-zero. There

exists a time reparametrization τ : [0, T1]→ [0, T ], where τ(0) = 0 and τ(T1) = T , such that

q(τ(t)) is an admissible path of the convexified Reeds-Shepp car defined on [0, T1]. Moreover,

T1 is equal to the wheel-rotation of the differential drive on its trajectory q(s).

Proof. We need to show that a time reparametrization τ : [0, T1] → [0, T ] and controls

v = (v1, v2) : [0, T1]→ [−1, 1]2 exist such that

d

dt
q(τ(t)) =













v1(t) cos θ(τ(t))

v1(t) sin θ(τ(t))

v2(t)
b













. (3.35)

Moreover, we want T1 = J(u). In other words, we want

∫ T1

0
dt =

1

2

∫ T1

0
(|u1(τ(t))|+ |u2(τ(t))|)τ̇ dt. (3.36)

Expanding the left handside of (3.35) we get

d

dt
q(τ(t)) = q̇(τ(t))τ̇ (t). (3.37)

Thus, (2.1), (2.2), and (3.37) imply that it is enough to have the following for (3.35) to

hold:

v1(t) =
u1(τ(t)) + u2(τ(t))

2
τ̇(t), (3.38)

v2(t) =
u2(τ(t))− u1(τ(t))

2
τ̇(t). (3.39)
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For (3.36) to hold it is enough to have

1 =
|u1(τ(t))| + |u2(τ(t))|

2
τ̇(t). (3.40)

Remember that u1(s) and u2(s) are given, and we need to find τ(t) with the above proper-

ties. Let τ be the solution of the following ordinary differential equation:

τ̇ =
2

|u1(τ)|+ |u2(τ)|
. (3.41)

Equation (3.41) may not have a solution in general, because its right handside need not be

Lipschitz in τ . Since u is assumed to be piecewise constant and non-zero, a solution τ exists

for (3.41). Now let v1 and v2 be defined by (3.38) and (3.39). Equations (3.38), (3.39), and

(3.41) imply that v1, v2 ∈ [−1, 1]. Thus, we showed existence of τ and v1 and v2 that satisfy

(3.35).

Lemma 3.18. Let q(t) be a minimum time curve for the convexified Reeds-Shepp car,

defined on [0, T ] and associated with control v(t) = (v1(t), v2(t)). There exists a time

reparametrization σ : [0, T0] → [0, T ], where σ(0) = 0 and σ(T0) = T , such that q(σ(s)) is

an admissible trajectory of the differential-drive defined on [0, T0]. Moreover, wheel-rotation

of the differential drive on its trajectory q(σ(s)) is equal to T .

Proof. We need to show that a time reparametrization σ : [0, T0] → [0, T ] and controls

u : [0, T0]→ U exist such that

d

ds
q(σ(s)) = u1(s)f1(q(σ(s))) + u2(s)f2(q(σ(s))), (3.42)

where fi’s are defined in (2.2). Moreover, we seek a σ such that J(u) = T . In other words,

we want

1

2

∫ T0

0
(|u1(s)|+ |u2(s)|)ds =

∫ T0

0
σ̇ds. (3.43)
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Expanding the left handside of (3.42) we get

d

ds
q(σ(s)) = q̇(σ(s))σ̇(s). (3.44)

In that case, (2.1), (2.2), and (3.44) imply that it is enough to have the following for (3.42)

to hold:

u1(s) = (v1(σ(s))− v2(σ(s)))σ̇(s), (3.45)

u2(s) = (v1(σ(s)) + v2(σ(s)))σ̇(s). (3.46)

In order to make J(u) = T , it is enough to have

σ̇(s) =
|u1(s)|+ |u2(s)|

2
. (3.47)

Remember that v1(t) and v2(t) are given, and we need to find σ(s) with the above properties.

We will prove that the solution of the following differential equation is the desired σ:

σ̇ =
1

|v1(σ)| + |v2(σ)|
. (3.48)

Since q is assumed to be a minimum time trajectory for the convexified Reeds-Shepp car,

for all t ∈ [0, T ] we have one of the following cases:

1. v1(t) = ±1, v2(t) = 0, i.e. straight segment,

2. v1(t) = ±1, v2(t) = ±1, i.e. curve segment,

3. v1(t) ∈ [−1, 1], v2(t) = ±1, i.e. three point turn.

It is clear then that (3.48) has a solution. Now let u1 and u2 be defined by (3.45) and (3.46).

Equations (3.45), (3.46), and (3.48) imply that u1, u2 ∈ [−1, 1]. Finally, (3.47) follows from

the fact that

|v1(t)− v2(t)|+ |v1(t) + v2(t)| = 2 (3.49)

in all the three cases above, and (3.45), (3.46), and σ̇ > 0.
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Theorem 3.19. Minimum time for the Reeds-Shepp car is equal to minimum wheel-rotation

for the differential drive. Moreover, minimum wheel-rotation paths for the differential drive

are exactly minimum time paths for the convexified Reeds-Shepp car.

Proof. Let q(s) be the minimum wheel-rotation path for the differential-drive associated

with control u. Our analysis in previous sections proves that u is piecewise constant.

Lemma 3.17 guarantees the existence of q(τ), an admissible path for the convexified Reeds-

Shepp car, such that the duration of q(τ) is equal to wheel-rotation of q(s). Lemma 3.18

implies that q(τ) has to be minimum time, because otherwise there exists a trajectory for

the differential-drive with less wheel rotation than that of q(s). In the same way if q(t) is

a minimum time path for the convexified Reeds-Shepp car, then q(σ) in Lemma 3.18 has

to be minimum wheel-rotation. It is a known fact that minimum time for the convexified

Reeds-Shepp car is the same as minimum time for the Reeds-Shepp car [164].

3.6 Cost-to-go Function

Level sets of the cost-to-go function for some goal orientations are presented in Figure 3.12.

In computing the cost-to-go function, initial configuration is assumed to be (0, 0, 0), and

goal orientation θ is assumed to be 0, π
8 , π

4 , 3π
8 , π

2 , and π. Numerical computations verify

that minimum wheel-rotation cost-to-go function is equal to the Reeds-Shepp cost-to-go

function.

3.7 Optimal Control Synthesis

In this section, we give the cost and goal configuration of every minimum wheel-rotation

trajectory in terms of its parameters. Therefore, finding the shortest path for every pair of

initial and goal configurations reduces to solving systems of equations for the path param-

eters. Note that in the following, orientation of the robot θ must always be considered an

element of S
1. In other words, θ is evaluated mod 2π.

Let q(t) be an arbitrary trajectory defined on [0, T ] corresponding to the input u(t), and

let q(0) = (xi, yi, θi). Let q̂(t) be the trajectory corresponding to the input u(t) such that
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Figure 3.12: Level sets of the cost-to-go function for θ = 0,
π
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3π
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,
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, and π

q̂(0) = (0, 0, 0). Suppose the goal configuration of q̂ is (x, y, θ), i.e. q̂(T ) = (x, y, θ). In that

case, the goal configuration of q is

xg = xi + x cos θi − y sin θi (3.50)

yg = yi + x sin θi + y cos θi (3.51)

θg = θi + θ, (3.52)

i.e. q(T ) = (xg, yg, θg). Thus, we may assume without loss of generality that the initial
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Table 3.3: α + γ + β ≤ π

CαPγCβ PαCγPβ κ1 κ2 κ3 c

R+
α P+

γ L+
β P+

αR+
γ P+

β α α + γ α + γ + β b

L+
αP+

γ R+
β P+

αL+
γ P+

β α α + γ α + γ + β −b

R−
α P−

γ L−

β P−
αR−

γ P−

β −α −α− γ −α− γ − β b

L−
αP−

γ R−

β P−
αL−

γ P−

β −α −α− γ −α− γ − β −b

configuration of the robot is (0, 0, 0) throughout this section.

3.7.1 CαPγCβ and PαCγPβ

In Table 3.3, the list of minimum wheel-rotation trajectories of type CαPγCβ and PαCγPβ

can be found. The goal configuration of CαPγCβ is

x = −c(sin κ1 + sin κ2 − sin κ3) (3.53)

y = c(cos κ1 − 1 + cos κ2 − cos κ3) (3.54)

θ = κ3, (3.55)

and the goal configuration of PαCγPβ is

x = c(sin κ1 − sin κ2) (3.56)

y = c(cos κ2 − cos κ1) (3.57)

θ = κ3, (3.58)

in which κ1, κ2, κ3, and c are the parameters in Table 3.3. Wheel-rotation of such trajectories

is α + γ + β.
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Table 3.4: α, β ≤ γ ≤ π
2

Cα|CγCβ κ1 κ2 κ3 c

R+
αL−

γ R−

β α α− γ α− γ − β b

L+
αR−

γ L−

β α α− γ α− γ − β −b

R−
αL+

γ R+
β −α −α + γ −α + γ + β b

L−
αR+

γ L+
β −α −α + γ −α + γ + β −b

CαCγ |Cβ κ1 κ2 κ3 c

R+
αL+

γ R−

β α α + γ α + γ − β b

L+
αR+

γ L−

β α α + γ α + γ − β −b

R−
αL−

γ R+
β −α −α− γ −α− γ + β b

L−
αR−

γ L+
β −α −α− γ −α− γ + β −b

3.7.2 Cα|CγCβ and CαCγ|Cβ

In Table 3.4, the list of minimum wheel-rotation trajectories of type Cα|CγCβ and CαCγ |Cβ

can be found. The goal configuration of both Cα|CγCβ and CαCγ |Cβ is

x = −c(2 sin κ1 − 2 sin κ2 + sinκ3) (3.59)

y = c(2 cos κ1 − 1− 2 cos κ2 + cos κ3) (3.60)

θ = κ3, (3.61)

in which κ1, κ2, κ3, and c are the parameters in Table 3.4. Wheel-rotation of such trajectories

is α + γ + β.

3.7.3 CαCγ|CγCβ and Cα|CγCγ |Cβ

In Table 3.5, the list of minimum wheel-rotation trajectories of type CαCγ |CγCβ and

Cα|CγCγ |Cβ can be found. The goal configuration of CαCγ |CγCβ is

x = −c(4 sin κ1 − 2 sin κ2 − sinκ3) (3.62)

y = c(4 cos κ1 − 1− 2 cos κ2 − cos κ3) (3.63)

θ = κ3, (3.64)
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Table 3.5: α, β ≤ γ ≤ π
2

CαCγ |CγCβ κ1 κ2 κ3 c

R+
α L+

γ R−
γ L−

β α α + γ α− β b

L+
αR+

γ L−
γ R−

β α α + γ α− β −b

R−
α L−

γ R+
γ L+

β −α −α− γ −α + β b

L−
αR−

γ L+
γ R+

β −α −α− γ −α + β −b

Cα|CγCγ |Cβ κ1 κ2 κ3 κ4 c

R+
α L−

γ R−
γ L+

β α α− γ α− 2γ α− 2γ + β b

L+
αR−

γ L−
γ R+

β α α− γ α− 2γ α− 2γ + β −b

R−
α L+

γ R+
γ L−

β −α −α + γ −α + 2γ −α + 2γ − β b

L−
αR+

γ L+
γ R−

β −α −α + γ −α + 2γ −α + 2γ − β −b

and the goal configuration of Cα|CγCγ |Cβ is

x = −c(2 sin κ1 − 2 sin κ2 + 2 sin κ3 − sinκ4) (3.65)

y = c(2 cos κ1 − 1− 2 cos κ2 + 2cos κ3 − cos κ4) (3.66)

θ = κ4, (3.67)

in which κ1, κ2, κ3, κ4, and c are the parameters in Table 3.5. Wheel-rotation of such

trajectories is α + 2γ + β.

3.7.4 CαSdCβ

In Table 3.6, the list of minimum wheel-rotation trajectories of type CαSdCβ can be found.

The goal configuration of CαSdCβ is

x = c1 cos κ1 + c2 sin κ1 + c3 sin κ2 (3.68)

y = c1 sinκ1 − c2 cos κ1 − c3 cos κ2 + c4 (3.69)

θ = κ2, (3.70)

in which κ1, κ2, c1, c2, c3, and c4 are the parameters in Table 3.6. Wheel-rotation of such

trajectories is α + d + β.
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Table 3.6: α, β ≤ π
2 and d ≥ 0

CαSdCβ κ1 κ2 c1 c2 c3 c4

R+
αS−

d R+
β α α + β −d 0 −b −b

L+
αS+

d L+
β α α + β d 0 b b

R+
αS−

d L−

β α α− β −d −2b b −b

L+
αS+

d R−

β α α− β d 2b −b b

R−
αS+

d R−

β −α −α− β d 0 −b −b

L−
αS−

d L−

β −α −α− β −d 0 b b

R−
αS+

d L+
β −α −α + β d −2b b −b

L−
αS−

d R+
β −α −α + β −d 2b −b b

3.7.5 CαCπ
2
SdCβ and CαSdCπ

2
Cβ

In Table 3.7, the list of minimum wheel-rotation trajectories of type CαCπ
2
SdCβ and

CαSdCπ
2
Cβ can be found. The goal configuration of such trajectories is

x = c1 sin κ1 + c2 cos κ1 + c3 sinκ2 (3.71)

y = −c1 cos κ1 + c2 sin κ1 − c3 cos κ2 + c4 (3.72)

θ = κ2, (3.73)

in which κ1, κ2, c1, c2, c3, and c4 are the parameters in Table 3.7. Wheel-rotation of such

trajectories is α + π
2 + d + β.

3.7.6 LαRπ
2
SdLπ

2
Rβ and RαLπ

2
SdRπ

2
Lβ

In Table 3.8, the list of minimum wheel-rotation trajectories of type LαRπ
2
SdLπ

2
Rβ and

RαLπ
2
SdRπ

2
Lβ can be found. The goal configuration of such trajectories is

x = c1 sin κ1 + c2 cos κ1 + c3 sinκ2 (3.74)

y = −c1 cos κ1 + c2 sin κ1 − c3 cos κ2 − c3 (3.75)

θ = κ2, (3.76)
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Table 3.7: d ≥ 0

Range CαCπ
2

SdCβ κ1 κ2 c1 c2 c3 c4

α, β ≤ π
2 R+

α L+
π
2

S+
d R−

β α α + π
2 − β −2b− d 2b −b −b

α, β ≤ π
2 L+

αR+
π
2

S−

d L−

β α α + π
2 − β 2b + d −2b b b

α + β ≤ π
2 R+

αL+
π
2

S+
d L+

β α α + π
2 + β −2b− d 0 b −b

α + β ≤ π
2 L+

αR+
π
2

S−

d R+
β α α + π

2 + β 2b + d 0 −b b

α, β ≤ π
2 R−

α L−
π
2

S−

d R+
β −α −α− π

2 + β −2b− d −2b −b −b

α, β ≤ π
2 L−

αR−
π
2

S+
d L+

β −α −α− π
2 + β 2b + d 2b b b

α + β ≤ π
2 R−

αL−
π
2

S−

d L−

β −α −α− π
2 − β −2b− d 0 b −b

α + β ≤ π
2 L−

αR−
π
2

S+
d R−

β −α −α− π
2 − β 2b + d 0 −b b

Range CαSdCπ
2

Cβ κ1 κ2 c1 c2 c3 c4

α, β ≤ π
2 R+

α S−

d L−
π
2

R−

β α α− π
2 − β −2b −2b− d −b −b

α, β ≤ π
2 L+

αS+
d R−

π
2

L−

β α α− π
2 − β 2b 2b + d b b

α + β ≤ π
2 R+

α S−

d R+
π
2

L+
β α α + π

2 + β 0 −2b− d b −b

α + β ≤ π
2 L+

αS+
d L+

π
2

R+
β α α + π

2 + β 0 2b + d −b b

α, β ≤ π
2 R−

α S+
d L+

π
2

R+
β −α −α + π

2 + β −2b 2b + d −b −b

α, β ≤ π
2 L−

αS−

d R+
π
2

L+
β −α −α + π

2 + β 2b −2b− d b b

α + β ≤ π
2 R−

α S+
d R−

π
2

L−

β −α −α− π
2 − β 0 2b + d b −b

α + β ≤ π
2 L−

αS−

d L−
π
2

R−

β −α −α− π
2 − β 0 −2b− d −b b
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Table 3.8: α + β < 2 and d ≥ 0

CαCπ
2
SdCπ

2
Cβ κ1 κ2 c1 c2 c3

R+
αL+

π
2

S+
d R−

π
2

L−

β α α− β −4b− d 2b b

L+
αR+

π
2

S−

d L−
π
2

R−

β α α− β 4b + d −2b −b

R−
αL−

π
2

S−

d R+
π
2

L+
β −α −α + β −4b− d −2b b

L−
αR−

π
2

S+
d L+

π
2

R+
β −α −α + β 4b + d 2b −b

in which κ1, κ2, c1, c2, and c3 are the parameters in Table 3.8. Wheel-rotation of such

trajectories is α + π + d + β.

3.8 Summary

By applying the Pontryagin Maximum Principle [141] and developing geometric arguments,

we derived necessary optimality conditions which helped to rule out non-optimal trajecto-

ries. The remaining trajectories form 28 different maximally optimal trajectories, which

were listed in Table 3.1. A complete list of words that describe all of 52 minimum wheel-

rotation trajectories was given in Table 3.2. We also proved that minimum wheel-rotation

for the differential drive is equal to minimum time for the Reeds-Shepp car. Moreover,

minimum wheel-rotation paths for the differential drive are exactly minimum time paths

for the convexified Reeds-Shepp car. However, it is currently unknown whether there is a

simpler way to show this equivalence. Based on the characterization of minimum wheel-

rotation trajectories, a method to further determine the applicable trajectory for every pair

of initial and goal configurations was presented in Section 3.7.
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Chapter 4

Minimum Wheel-Rotation Paths

for a Differential-Drive Disc

Among Convex Obstacles

Every minimum wheel-rotation trajectory among obstacles is composed of two kinds of

subtrajectories: on the boundary of obstacles and in the interior of collision-free space.

Chapter 3 presented the first step of our approach to finding minimum wheel-rotation tra-

jectories for a differential drive disc among convex obstacles. In this chapter, we present

the remaining three steps: 1) Characterization of minimum wheel-rotation trajectories on

the boundary of obstacle region using the Pontryagin Maximum Principle, 2) Characteriza-

tion of intersection points between free and boundary minimum wheel-rotation trajectories

using the Pontryagin Jump Condition [141], and 3) Definition of a nonholonomic bitan-

gency graph in which the solution is sought. We show those subtrajectories that lie in

the interior of collision-free space are tangent to the obstacles at both ends. The bitan-

gency condition results in a nonholonomic bitangency graph which is used to find minimum

wheel-rotation trajectories. Vertices of the nonholonomic bitangency graph are points on

the obstacle boundary, and its edges are minimum wheel-rotation segments, each of which

is either thoroughly on the obstacle boundary or bitangent. In general, the nonholonomic

bitangency graph is a 2-dimensional subset of the 3-dimensional configuration space. For

each shortest path query, initial and goal configurations are appropriately appended to the

graph, and a continuous optimization or a search on parts or all of the graph gives the

solution.

4.1 Related Work

Agarwal et al. obtained an algorithm for computing shortest paths for the Reeds-Shepp car

amongst moderate obstacles [2]. An obstacle is said to be moderate if it is convex and its
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boundary is a differentiable curve whose curvature is everywhere not more than 1. Their

algorithm computes a collision-free path for the Reeds-Shepp car whose length is either

optimal or within an additive constant of optimal. To compute the solution, their algo-

rithm starts with the Euclidean shortest path among obstacles. To adjust initial and goal

orientations, a beginning and terminal segment are concatenated to it. Through a shorten-

ing process, their algorithm obtains the solution. Their algorithm computes approximate

solutions, whereas our framework considers exact solutions. Their approach is specific to

the Reeds-Shepp car, and cannot be utilized for other nonholonomic systems, whereas our

framework covers a wide class of problems. In a different approach, Desaulniers et al. gave

an approximation algorithm to compute a shortest path for the Reeds-Shepp car among

polygonal obstacles by decomposing the space into polygonal regions and discretizing the

boundaries of regions [54].

Our problem is essentially similar, but not identical, to the one Agarwal et al. study.

It is similar because the configuration space obstacles are moderate in our problem; see

Proposition 2.1. In addition, minimum time, equivalently minimum length, for the Reeds-

Shepp car is equal to minimum wheel-rotation for the differential drive; see Section 3.5.

However, the two problems are not identical because the differential drive is a different

system from the Reeds-Shepp car, to the extent that the shortest paths for the Reeds-Shepp

car need not always exist among general obstacles [53], whereas minimum wheel-rotation

paths for the differential drive always exist for any kind of obstacles; see Section 2.2.1.

The visibility graph is one of the main ingredients of our framework, which was reviewed

in Section 2.4. Figure 4.1 illustrates the visibility graph of three circular obstacles in the

plane. In this example, the edges of the graph are straight lines in the interior of the free

space and arcs on the obstacle boundary. There are no dynamic constraints and the metric

is Euclidean. To find the shortest path from point A1 to point A2, one finds the tangents

from Ai to the obstacles, and searches for the shortest path from A1 to A2 in the resulting

graph which is shown in Figure 4.2.

The approach that we use to find shortest paths is similar in spirit to the visibility graph

method. Edges of the shown visibility graph, in Figure 4.1, are Euclidean shortest paths.
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Figure 4.1: Visibility graph of three circular obstacles.

A1

A2

Figure 4.2: Finding the shortest path from A1 to A2 using the visibility graph.
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Figure 4.3: A sample minimum wheel-rotation path.

Figure 4.4: A sample edge of the nonholonomic bitangency graph.

We propose nonholonomic bitangency graph whose edges are nonholonomic shortest paths.

Figure 4.3 illustrates a sample minimum wheel-rotation path for the differential drive in an

unobstructed environment, and Figure 4.4 illustrates a sample edge of the nonholonomic

bitangency graph.

Minimum wheel-rotation trajectories among obstacles consist of a finite number of seg-

ments each of which is either in the interior of the free region or on the obstacle boundary.

Those segments that are in the interior of the free region were characterized in Chapter 3.

In the following section, we apply the Pontryagin Maximum Principle in ∂Cfree to prune

out some non-optimal boundary segments.

4.2 Minimum Wheel-Rotation Paths on the Obstacle

Boundary

Let q(t) be an optimal trajectory defined on [0, T ] and associated with control u(t). Assume

q([0, T ]) ⊂ ∂Cfree. Let g : C → R be a real-valued smooth function such that g(q) = 0 locally
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defines ∂Cfree. Note that ∂g/∂θ = 0 since the boundary components are ∂Pi × S
1. Let H

be the Hamiltonian in Section 3.2.1. Let

p(q, u) = 〈
∂g

∂q
, f(q, u)〉. (4.1)

The constrained Pontryagin Maximum Principle [141], which was summarized in Section

2.3, shows that there exists a constant λ0 ≤ 0, a vector-valued adjoint function λ(t), that is

nonzero if λ0 = 0, and a real-valued function η(t) with the following properties along q(t):

λ̇ = −
∂H

∂q
+ η(t)

∂p

∂q
, (4.2)

H(λ(t), q(t), u(t)) = maxz∈U H(λ(t), q(t), z), (4.3)

H(λ(t), q(t), u(t)) ≡ 0. (4.4)

Let the switching functions ϕi(t) be defined in (3.5). Remember that the control law

given by the Pontryagin Maximum Principle is

ui(t) ∈























[0, 1] if ϕi(t) = 1

{0} if |ϕi(t)| < 1

[−1, 0] if ϕi(t) = −1

(4.5)

along an optimal trajectory. For details of this analysis see Lemma 3.3.

Lemma 4.1. Let q(t) be an optimal trajectory defined on [0, T ] such that q([0, T ]) ⊂ ∂Cfree.

In that case, |ϕ1(t)| = |ϕ2(t)| = 1 for t ∈ [0, T ].

Proof. On the contrary, suppose |ϕi(t0)| < 1 for some t0 ∈ [0, T ] and some i = 1, 2. Let j

be the index of obstacle, i.e. (x(t0), y(t0)) ∈ ∂Pj where q(t0) = (x(t0), y(t0), θ(t0)). Since

ϕi(t) is continuous on [0, T ], there exists ǫ > 0 such that |ϕi(t)| < 1 for t ∈ [t0 − ǫ, t0 + ǫ].

Thus, the control law (4.5) implies that the robot swings over the interval [t0− ǫ, t0 + ǫ], i.e.

ui([t0 − ǫ, t0 + ǫ]) = 0. We claim that this is impossible. By Proposition 2.1, the curvature

of ∂Pj does not exceed 1
r . The center of the robot follows a circle of radius b while swinging.
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The curvature of this circle is 1
b > 1

r . Thus, the robot cannot follow the boundary of Cfree

while swinging.

Similar to their free counterparts in Section 3.2.3, we define tight and loose boundary

trajectories as follows.

Definition 4.1. Let q(t) be an optimal trajectory on the boundary, associated with adjoint

λ(t). We call q(t) a loose optimal trajectory if λ1(0) = λ2(0) = 0 and |λ3(0)| = 2b. We call

q(t) a tight optimal trajectory if |λ1(0)| + |λ2(0)| 6= 0.

Lemma 4.2. Let q(t) be a tight optimal trajectory defined on [0, T ] such that q([0, T ]) ⊂

∂Cfree. In that case, ϕ1(t) = ϕ2(t) for t ∈ [0, T ].

Proof. Lemma 4.1 showed that |ϕ1(t)| = |ϕ2(t)| = 1 for t ∈ [0, T ]. Since ϕi(t) are continuous

over [0, T ], there are two possible cases: ϕ1 ≡ ϕ2 and ϕ1 ≡ −ϕ2. We show that ϕ1 ≡ ϕ2

in this case. On the contrary, suppose ϕ1 ≡ −ϕ2. The control law (4.5) implies that

u1(t)u2(t) ≤ 0. The robot rotates in place over the interval [0, T ], i.e. u1(t) = −u2(t);

otherwise, the center of the robot traverses a path whose curvature is more than 1
r , which

cannot be the boundary of obstacle by Proposition 2.1. Since u1(t) = −u2(t) over the

interval [0, T ],

∂p

∂x
(q, u) =

u1 + u2

2
(
∂2g

∂x2
cos θ +

∂2g

∂x∂y
sin θ) ≡ 0, (4.6)

∂p

∂y
(q, u) =

u1 + u2

2
(

∂2g

∂y∂x
cos θ +

∂2g

∂y2
sin θ) ≡ 0. (4.7)

Consequently, (4.2) implies that λ̇1 ≡ λ̇2 ≡ 0, in which case λ1 ≡ λ1(0) and λ2 ≡ λ2(0).

Remember that we supposed ϕ1(t) = −ϕ2(t), in which case (3.5) and (2.2) imply λ1 cos θ +

λ2 sin θ ≡ 0. Since q(t) is assumed to be tight, |λ1| + |λ2| 6= 0. This is true only if θ̇ ≡ 0,

which is a contradiction with robot rotating in place.

Lemma 4.3. Let q(t) be a loose optimal trajectory defined on [0, T ] such that q([0, T ]) ⊂

∂Cfree. In that case, ϕ1(t) = −ϕ2(t) for t ∈ [0, T ], and the robot rotates in place, i.e.

u1 ≡ −u2. Moreover, the trajectory remains loose over the time interval, i.e. λ1 ≡ λ2 ≡ 0

and |λ3| ≡ 2b.
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Proof. Lemma 4.1 showed that |ϕ1(t)| = |ϕ2(t)| = 1 for t ∈ [0, T ]. We show that ϕ1 ≡ −ϕ2

in this case. Since ϕi(t) are continuous over [0, T ], it is enough to show that ϕ1(0) = −ϕ2(0).

Since q(t) is loose, λ1(0) = λ2(0) = 0 and |λ3(0)| = 2b. Equations (3.5) and (2.2) show that

ϕ1(0) = −λ3(0)
2b = −ϕ2(0).

Now we show that the robot rotates in place over the time interval. The control law

(4.5) shows that u1(t)u2(t) ≤ 0 for t ∈ [0, T ]. If there exist ǫ > 0 and t0 ∈ [0, T − ǫ] such

that u1(t) 6= −u2(t) for t ∈ [t0, t0 + ǫ], then the center of the robot traverses a path whose

curvature is more than 1
r , which cannot be the boundary of obstacle by Proposition 2.1.

Therefore, u1 ≡ −u2 and the robot rotates in place.

Since u1(t) = −u2(t) over [0, T ],

∂p

∂x
(q, u) =

u1 + u2

2
(
∂2g

∂x2
cos θ +

∂2g

∂x∂y
sin θ) ≡ 0, (4.8)

∂p

∂y
(q, u) =

u1 + u2

2
(

∂2g

∂y∂x
cos θ +

∂2g

∂y2
sin θ) ≡ 0. (4.9)

Consequently, (4.2) implies that λ̇1 ≡ λ̇2 ≡ 0 and λ1 ≡ 0, λ2 ≡ 0. Finally, |ϕi| ≡ 1 implies

|λ3| ≡ 2b.

4.3 Intersection Points

Segments of a minimum wheel-rotation trajectory among obstacles are either in the interior

of the free region or on the obstacle boundary. In Section 4.2 and Chapter 3, we studied

both segment types. We here characterize the intersections that can happen between two

consecutive segments. First, we give the following definition to distinguish between two

different types of intersection. We focus on a single isolated intersection in the definition.

Definition 4.2. Let q(t) be an optimal trajectory defined on [0, T ]. If 0 < τ < T is

such that q([0, τ)) ⊂ Cfree\∂Cfree and q([τ, T ]) ⊂ ∂Cfree, then we call τ the junction time

of q(t), and q(τ) the junction point. Likewise, we call τ the junction time of q(t), and

q(τ) the junction point if q([0, τ ]) ⊂ ∂Cfree and q((τ, T ]) ⊂ Cfree\∂Cfree. If q(τ) ∈ ∂Cfree

and q([0, T ]\{τ}) ⊂ Cfree\∂Cfree, then we call τ the reflection time of q(t), and q(τ) the
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q(0)

q(τ)

q(T )

Cfree

∂Cfree

q(0)

q(τ)

∂Cfree

q(T )

Cfree

Junction Reflection

Figure 4.5: The junction/reflection time τ and the junction/reflection point q(τ) on a
trajectory q(t).

reflection point. See Figure 4.5 for an illustration. Note that q(t) is not necessarily an

optimal trajectory in Figure 4.5.

The Pontryagin Jump Condition [141] and the symmetry of our problem yield the

following lemma.

Lemma 4.4 (Pontryagin Jump Condition [141]). Let q(t) be an optimal trajectory defined

on [0, T ], associated with the adjoint λ(t). Assume q(τ) ∈ ∂Cfree. At t = τ , denote the left

and the right limits of λ(t) by λ(τ−) and λ(τ+) respectively. In that case, λ(τ+) = λ(τ−)

if τ is a junction time. If τ is a reflection time, then λ(τ+) = λ(τ−) + µ(∂g/∂q), in which

µ is a constant.

Corollary 4.5. If τ is a junction time of q(t), then λ(t) is continuous on the whole interval

[0, T ].

Corollary 4.5 implies that a loose optimal trajectory cannot intersect a tight optimal

trajectory at a junction point. In the following section, we characterize possible junction

points.

4.3.1 Characterization of Junction Points

Without loss of generality, we assume throughout this section that q(t) is an optimal tra-

jectory defined on [0, T ] such that q([0, τ)) ⊂ Cfree\∂Cfree and q([τ, T ]) ⊂ ∂Cfree. Corollary

4.5 shows that λ(t) is continuous over [0, T ]. Therefore, the switching functions ϕ1(t) and
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ℓ1

ℓ2

S−

S+

S±

∂Pj

Figure 4.6: Orientation vector of the robot is tangent to the obstacle, and the robot center
lies on the center line of S± region at a junction point along a tight minimum wheel-rotation
trajectory. Note that the depicted obstacle is in the configuration space.

ϕ2(t) are also continuous. Junction points over loose optimal trajectories are not important,

because a loose optimal trajectory remains loose on the whole time interval; see Lemma

4.3 and Corollary 4.5. In the following, we characterize junction points over tight optimal

trajectories.

Theorem 4.6. Let q(t) be a tight optimal trajectory. Assume q(τ) = (x(τ), y(τ), θ(τ))

is the junction point of q(t). If (x(τ), y(τ)) ∈ ∂Pj , then the vector (cos θ(τ), sin θ(τ)) is

tangent to ∂Pj at (x(τ), y(τ)). Moreover, λ3(τ) = 0.

Proof. Obviously, q̇(τ) = (ẋ(τ), ẏ(τ), θ̇(τ)) is tangent to ∂Pj × S
1 at q(τ). By (2.1) and

(2.2),

(ẋ(τ), ẏ(τ)) =
u1(τ) + u2(τ)

2
(cos θ(τ), sin θ(τ)). (4.10)

To obtain the result, it is enough to show that u1(τ) + u2(τ) 6= 0. By Lemma 4.2, ϕ1(t) =

ϕ2(t) over the interval [τ, T ]. Therefore, the control law (4.5) implies u1(τ)u2(τ) ≥ 0. If

u1(τ) + u2(τ) = 0, then u1(τ) = u2(τ) = 0 in which case the trajectory is motionless.

Finally, ϕ1(τ) = ϕ2(τ) with (2.2) and (3.5) implies λ3(τ) = 0.

According to Theorem 4.6, the robot orientation vector is tangent to the obstacle at a

junction point over a tight optimal trajectory. In addition, the center of the robot lies on

the center line of S± region, in which S± is defined in Section 3.2.4. See Figure 4.6 for an
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illustration. In the following section, we characterize possible reflection points.

4.3.2 Characterization of Reflection Points

Taking into account ∂g/∂θ = 0, Lemma 4.4 (Pontryagin Jump Condition) gives

λ1(τ
+) = λ1(τ

−) + µ
∂g

∂x
, (4.11)

λ2(τ
+) = λ2(τ

−) + µ
∂g

∂y
, (4.12)

λ3(τ
+) = λ3(τ

−). (4.13)

Those equations with (3.5) and (2.2) imply that

ϕ1(τ
+) = ϕ1(τ

−) + µ(
∂g

∂x
cos θ +

∂g

∂y
sin θ), (4.14)

ϕ2(τ
+) = ϕ2(τ

−) + µ(
∂g

∂x
cos θ +

∂g

∂y
sin θ). (4.15)

Theorem 4.7. Let q(t) be an optimal trajectory and let τ be the reflection time of q(t).

Remember q(τ) = (x(τ), y(τ), θ(τ)), and let (x(τ), y(τ)) ∈ ∂Pj . In that case, the following

hold:

1. (Loose-Loose) If both q|[0,τ) and q|[τ,T ] are loose optimal trajectories, then q(t) is a

loose extremal in Section 3.3.3.

2. (Tight-Loose) If q|[0,τ) is a tight and q|[τ,T ] is a loose optimal trajectory, then

(cos θ(τ), sin θ(τ)) is tangent to ∂Pj at (x(τ), y(τ)).

3. (Tight-Tight) If both q|[0,τ) and q|[τ,T ] are tight optimal trajectories, then either

(cos θ(τ), sin θ(τ)) is tangent to ∂Pj at (x(τ), y(τ)), or ϕ1(τ
+) = −ϕ2(τ

−) and

ϕ2(τ
+) = −ϕ1(τ

−).

Proof.

(Loose-Loose) If both q|[0,τ) and q|[τ,T ] are loose optimal trajectories, in which case λ1(τ
+) =

λ1(τ
−) = 0 and λ2(τ

+) = λ2(τ
−) = 0, then λ(τ+) = λ(τ−). Therefore, q(t) is a loose

extremal in Section 3.3.3.
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(Tight-Loose) Since q|[τ,T ] is loose, either ϕ1(τ
+) = −ϕ2(τ

+) = 1 or ϕ1(τ
+) = −ϕ2(τ

+) =

−1. Since q|[0,τ) is tight, either |ϕ1(τ
−)| = 1 or |ϕ2(τ

−)| = 1. In any case,

µ(
∂g

∂x
cos θ +

∂g

∂y
sin θ) = 0 (4.16)

because

ϕi(τ
+) = ϕi(τ

−) + µ(
∂g

∂x
cos θ +

∂g

∂y
sin θ), (4.17)

and |ϕi| ≤ 1. Therefore, (cos θ(τ), sin θ(τ)) is tangent to ∂Pj at (x(τ), y(τ)).

(Tight-Tight) Suppose (cos θ(τ), sin θ(τ)) is not tangent to ∂Pj at (x(τ), y(τ)). In that case,

µ(
∂g

∂x
cos θ +

∂g

∂y
sin θ) 6= 0. (4.18)

Since q|[0,τ) is tight, either |ϕ1(τ
−)| = 1 or |ϕ2(τ

−)| = 1. Since q|[τ,T ] is tight, either

|ϕ1(τ
+)| = 1 or |ϕ2(τ

+)| = 1. If ϕ1(τ
−) = ϕ2(τ

−) = 1, then (4.17) and (4.18) imply

ϕ1(τ
+) = ϕ2(τ

+) = −1. In that case, the robot moves in opposite directions before and after

the reflection time, which is absurd. A similar argument rules out ϕ1(τ
−) = ϕ2(τ

−) = −1.

Since (4.18) holds, ϕ1(τ
−) = −ϕ2(τ

−) = 1 and ϕ1(τ
−) = −ϕ2(τ

−) = −1 are impossible.

Since |ϕi| ≤ 1, the only remaining possibility is ϕ1(τ
+) = −ϕ2(τ

−) and ϕ2(τ
+) = −ϕ1(τ

−),

which is described below.

1. If ϕ1(τ
−) = −1 and |ϕ2(τ

−)| < 1, then ϕ2(τ
+) = 1, ϕ1(τ

+) = −ϕ2(τ
−), and

µ( ∂g
∂x cos θ + ∂g

∂y sin θ) = 1− ϕ2(τ
−).

2. If ϕ2(τ
−) = −1 and |ϕ1(τ

−)| < 1, then ϕ1(τ
+) = 1, ϕ2(τ

+) = −ϕ1(τ
−), and

µ( ∂g
∂x cos θ + ∂g

∂y sin θ) = 1− ϕ1(τ
−).

3. If ϕ1(τ
−) = 1 and |ϕ2(τ

−)| < 1, then ϕ2(τ
+) = −1, ϕ1(τ

+) = −ϕ2(τ
−), and

µ( ∂g
∂x cos θ + ∂g

∂y sin θ) = −1− ϕ2(τ
−).

4. If ϕ2(τ
−) = 1 and |ϕ1(τ

−)| < 1, then ϕ1(τ
+) = −1, ϕ2(τ

+) = −ϕ1(τ
−), and

µ( ∂g
∂x cos θ + ∂g

∂y sin θ) = −1− ϕ1(τ
−).
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Due to symmetries, (Loose-Tight) case is similar to the (Tight-Loose) case in Theorem

4.7. In the (Tight-Tight) case of Theorem 4.7, µ is uniquely computed from the equations

in the proof. Hence, λ(τ+) is uniquely determined by λ(τ−) at the reflection point.

We are now ready to present the nonholonomic bitangency graph, because we have

characterized free and boundary minimum wheel-rotation segments together with their

possible intersections. In Section 4.3, we showed that the orientation vector of the robot

is tangent to the boundary of obstacle at a junction point over a tight optimal trajectory,

and the center of the robot lies on the center line of S± region; see Figure 4.6 for an

illustration. We also showed that either the orientation vector of the robot is tangent to

the boundary of obstacle at a reflection point or the value of the adjoint after the reflection

time is uniquely determined by its value before the reflection time. We use those results to

define our nonholonomic bitangency graph.

4.4 Nonholonomic Bitangency Graph

In this section, we define a nonholonomic bitangency graph G = (V,E) among obstacles

P1, P2, . . . , Pn. The graph is used to answer multiple geodesic queries. Since G may be

infinite in general, it is not always possible to build it explicitly. Therefore for each query,

the solution is extracted by a search algorithm in parts of a graph that is obtained by

augmenting G with initial and goal configurations and their connecting edges. Vertices

of G are the junction and reflection points of minimum wheel-rotation trajectories for

every pair of initial and goal configurations. More precisely, v = (x, y, θ) ∈ V ⊂ ∂Cfree

if and only if (cos θ, sin θ) is tangent to the boundary of obstacle at (x, y). Thus, there

may exist two distinct vertices in V with the same (x, y) coordinates but with opposite

orientations. In a nutshell, there is an edge (u, v) ∈ E between u, v ∈ V if there is a free

extremal, as characterized in Chapter 3, or an obstacle minimum wheel-rotation trajectory,

as characterized in Section 4.2, between u and v. We now precisely define edges of G.
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∂Pk

pj

pk

R
2

θ − π

θ

θ

θ − π

∂Pj

Figure 4.7: Bitangent edges (v1
j , v1

k) and (v2
j , v

2
k) in the nonholonomic bitangency graph G,

in which v1
j = (pj , θ), v2

j = (pj , θ−π) ∈ R
2× S

1 and v1
k = (pk, θ), v2

k = (pk, θ−π) ∈ R
2× S

1.

4.4.1 Tight Edges of G

There is a tight edge between u, v ∈ V if there is a tight minimum wheel-rotation trajectory

in Cfree between u and v. In the following we first present those tight edges whose both

end points are junction points.

Let v1
j = (pj, θ), v2

j = (pj , θ − π), v1
k = (pk, θ), v2

k = (pk, θ − π) ∈ V where pj ∈ ∂Pj and

pk ∈ ∂Pk. The superscripts of v1, v2 represent two different orientations which are an angle

π apart. In that case, (v1
j , v1

k), (v
2
j , v2

k) ∈ E if the line segment pj − pk is tangent to ∂Pj

at pj and tangent to ∂Pk at pk and it is completely in Cfree; see Figure 4.7. Associate the

length of pj − pk segment to the edges (v1
j , v

1
k) and (v2

j , v2
k). See Figures 4.8 and 4.9 for an

example.

Add the edge (v1
j , v

2
k) (and (v2

j , v
1
k)) to E if there is a trajectory Sd1

Lπ
2
Rπ

2
Sd2

or

Sd1
Rπ

2

Lπ
2

Sd2
in Cfree, which starts at v1

j (respectively v2
j ) and ends at v2

k (respectively

v1
k); see Figures 4.10 and 4.11. Note that the swing parts of such trajectories are in the

same direction, i.e. both clockwise or both counter-clockwise. Associate wheel rotation of

the trajectory which is d1 + d2 + π to the edges (v1
j , v

2
k) and (v2

j , v
1
k). This construction

corresponds to those tight minimum wheel-rotation pieces for which the width of S± region

is 2b.
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ℓ1

S−

S+

ℓ2

S±

∂Pj∂Pk

Figure 4.8: Robot motion along a bitangent edge of G. The width of S± is 2b in this case.

ℓ1

S−

S+

S±

ℓ2

∂Pj
∂Pk

Figure 4.9: The path traversed by the robot center along an edge in Figure 4.8.

ℓ1

ℓ2

S+

S−

S±

∂Pj
∂Pk

Figure 4.10: A bitangent edge of G that contains a 180 ◦ flip. The width of S± is 2b in this
case.
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ℓ1

ℓ2

S+

S−

S±

∂Pj
∂Pk

Figure 4.11: The path traversed by the robot center along the edge in Figure 4.10.

Let vj = (pj, θj), vk = (pk, θk) ∈ V, in which pj ∈ ∂Pj and pk ∈ ∂Pk. In that

case, (vj , vk) ∈ E if the angle α between the segment pj − pk and the tangent on ∂Pj

at pj is equal to the angle between the segment pj − pk and the tangent on ∂Pk at

pk, and a path of the following forms: Rπ
2
−αLπ

2
−αRπ

2
−αLπ

2
−α(Rπ

2
−αLπ

2
−αRπ

2
−αLπ

2
−α)∗,

Lπ
2
−αRπ

2
−αLπ

2
−αRπ

2
−α(Lπ

2
−αRπ

2
−αLπ

2
−αRπ

2
−α)∗, Rπ

2
−αLπ

2
−α(Rπ

2
−αLπ

2
−αRπ

2
−αLπ

2
−α)∗,

or Lπ
2
−αRπ

2
−α(Lπ

2
−αRπ

2
−αLπ

2
−αRπ

2
−α)∗ which takes the robot from vj to vk is in Cfree.

Superscript ∗ means zero or more copies of the base expression. In the base expression

the first two swings are in the same direction and the remaining two are also in the same

direction, i.e. both clockwise or both counter-clockwise. This construction corresponds to

those tight minimum wheel-rotation pieces for which the width of S± region is less than 2b.

See Figures 4.12 and 4.13 for an illustration. To the edge (vj , vk), associate wheel rotation

of such path, which is N(π − 2α) where N is the number of swing pairs.

We considered only those tight edges, so far, whose end points are junction points. We

here consider those tight edges whose end points are reflection points. Add (vj , vk) to E,

where vj, vk ∈ V, if there exists a tight extremal, as in Section 3.3.2, that takes the robot

from vj to vk. See Figures 4.14 and 4.15 for a sample edge whose initial point is a reflection

point. In addition, add (vj , vk) to E if there exists a tight extremal, with a number of

reflection points in the middle, that takes the robot from vj to vk. See Figures 4.16 and

4.17 for a sample tight edge that contains a reflection point in the middle. The reflection
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ℓ1

ℓ2

S± π
2 − α

S−

S+

∂Pj

∂Pk

Figure 4.12: Illustration of R−
π
2
−αL

−
π
2
−αR

+
π
2
−αL

+
π
2
−α as an edge of G. The width of S± is

less than 2b in this case.

ℓ1

ℓ2

S±

S−

S+

∂Pj

∂Pk

Figure 4.13: The path traversed by the robot center along the edge in Figure 4.12.

S±

ℓ2

ℓ1

S−

S+

∂Pk
∂Pj

Figure 4.14: A sample tight edge whose initial point is a reflection point.
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S±

ℓ2

ℓ1

S−

S+

∂Pk
∂Pj

Figure 4.15: The path traversed by the robot center along the edge in Figure 4.14.

points are characterized in the (Tight-Tight) case of Theorem 4.7. In particular, the robot

orientation is allowed to be non-tangent to the obstacle boundary at the reflection points.

We regard those reflection points as transient points which do not play the role of a vertex

in the visibility graph. At those points, the value of the adjoint after the reflection time is

uniquely determined by its value before the reflection time; see proof of Theorem 4.7. In

this way, the trajectory between vj and vk can be uniquely computed.

4.4.2 Loose Edges of G

Lemma 4.3 and Corollary 4.5 show that a loose optimal trajectory remains loose if it does

not contain reflection points. Theorem 4.7 shows that an optimal trajectory can switch from

loose to tight or from tight to loose at a reflection point if the robot orientation is tangent

to the obstacle boundary, and either ϕ1 = −ϕ2 = 1 or ϕ1 = −ϕ2 = −1. Let vj, vk ∈ V. If

vj and vk are both reflection points, adjacent to tight edges, and either ϕ1 = −ϕ2 = 1 at

vj and vk, or ϕ1 = −ϕ2 = −1 at vj and vk, then it is possible to add (vj , vk) to E. The

trajectory connecting vj to vk must be a loose extremal of the form given in Section 3.3.3.

4.4.3 Boundary Edges of G

For every pair v1 = (p1, θ1), v2 = (p2, θ2) ∈ V such that p1 and p2 belong to the same

obstacle boundary component ∂Pℓ, add an edge (v1, v2) ∈ E if the robot can move from v1
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ℓ1

ℓ2

∂Pk

∂Pj

∂Pm

Figure 4.16: A sample tight edge that contains a reflection point in ∂Pm.

ℓ1

ℓ2

∂Pk

∂Pj

∂Pm

Figure 4.17: The path traversed by the robot center along the edge in Figure 4.16.
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to v2 by following the boundary of obstacle ∂Pℓ. Associate the length of the path in ∂Pℓ to

this edge.

4.5 Shortest Path Query

In a query, vinit, the initial configuration, and vgoal, the goal configuration, are given. To

compute the solution, we augment the nonholonomic bitangency graph G with vinit and

vgoal and their connecting edges. To connect vinit and vgoal to G, it is enough to regard

them as elements of V and consider all applicable tight and loose edges, in Sections 4.4.1

and 4.4.2, that connect them to the graph. Since G may be infinite in general, it is not

always possible to build it explicitly. Therefore for each query, the solution is extracted by

a search algorithm in parts or all of the augmented graph.

4.6 Summary

In this chapter, we presented a method to compute minimum wheel-rotation trajectories

among convex obstacles. Among obstacles, a minimum wheel-rotation trajectory is com-

posed of a finite number of segments, each of which is either in the interior of the free

configuration space or on the boundary of obstacle region. Those segments that are in

the interior of the free region were characterized in Chapter 3. A constrained Pontryagin

Maximum Principle with our problem-specific arguments helped us to characterize bound-

ary segments in Section 4.2. We used the Pontryagin Jump Condition [141] to rule out

non-optimal intersections between free and boundary segments. Those results helped us to

introduce a nonholonomic bitangency graph to which the search for the minimum wheel-

rotation path is confined. In general, our nonholonomic bitangency graph is a 2-dimensional

subset of the 3-dimensional configuration space of the robot. Therefore, further optimiza-

tion or a continuous search may be required to answer queries. In cases where the graph

is 1-dimensional and can be computed, any graph search algorithm, such as Dijkstra’s

algorithm, is employed to extract the solution.
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Chapter 5

Time-Optimal Paths for a Dubins

Airplane

We give a characterization of the time-optimal trajectories for our simplified airplane model

in this chapter. Our airplane model is a natural extention of the Dubins car [56], and extends

it with an additional configuration variable for the altitude. In Section 2.1.2, we precisely

defined the model. The time-optimal trajectories specify time-minimizing maneuvers. In

addition, they comprise a useful set of motion primitives as it was discussed in Section 1.1,

and they play a crucial role in air traffic management systems [95, 168, 174, 182], e.g. in

detecting the safety regions. This chapter was a joint work with Steven M. LaValle [43].

5.1 Related Work

Walsh, Montgomery, and Sastry used Pontryagin Maximum Principle to plan optimal paths

on matrix Lie groups [174]. Specifically, they plan optimal paths for an airplane in SE(2),

SO(3), and SE(3). Their cost function is quadratic in the input. In this chapter, we

consider a different problem in which we minimize time for a system in SE(2) × R. For

algorithms for steering on matrix Lie groups, see [150, 173], and for optimal path planning

for Unmanned Aerial Vehicles (UAV) with tactical constraints, see [176, 178].

The approach that we use to derive optimal trajectories is similar in spirit to the one

used in Chapter 3. In Section 2.2.2, we proved the existence of optimal paths. We use

the Pontryagin Maximum Principle as a necessary condition to rule out some non-optimal

paths. We distinguish three cases: low, medium, and high goal altitudes of the airplane.

Intuitively, if the goal altitude is low, the airplane has to follow the shortest path for the

Dubins car with an unsaturated altitude velocity. If the goal altitude is high, the altitude

velocity gets saturated and the system has to maneuver until it reaches the goal altitude.
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For medium altitudes in between low and high, the time-optimal path is either a locally

longest curve for the Dubins car or a path composed of turns and pieces of planar elastica

[85] with saturated altitude velocity. Locally longest curves for the Dubins car, which

cannot be infinitesimally elongated, play an important role in the airplane time-optimal

trajectories for medium altitude. An example of such locally longest curves is a short arc

of a circle. Dubins proved that a short arc of a circle is isolated in the space of all bounded

curvature plane paths [57]. As a by-product, we characterize locally longest curves in this

chapter.

5.2 Pontryagin Maximum Principle

Let the Hamiltonian H : R
4 × C′ × U → R be

H(λ, p, u) = 〈λ, ṗ〉 (5.1)

in which ṗ is given in (2.8). According to the Pontryagin Maximum Principle [141], for

every optimal trajectory p(t) defined on [0, T ] and associated with control u(t), there exists

a constant λ0 ≥ 0 and an absolutely continuous vector-valued adjoint function λ(t) =

(λ1(t), λ2(t), λ3(t), λ4(t)), that is nonzero if λ0 = 0, with the following properties along the

optimal trajectory:

λ̇ = −
∂H

∂p
, (5.2)

H(λ(t), p(t), u(t)) = max
z∈U

H(λ(t), p(t), z), (5.3)

H(λ(t), p(t), u(t)) ≡ λ0. (5.4)

Definition 5.1. An extremal is a trajectory p(t) that satisfies the conditions of the Pon-

tryagin Maximum Principle.

In this section, let p(t) be an extremal associated with the adjoint λ(t) and the control
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u(t). Equation (5.2) can be solved for λ to obtain

λ(t) =



















c1

c2

c3

c1y − c2x + c4



















, (5.5)

in which c1, c2, c3, and c4 are constants. Along an extremal, (5.3) yields the extremal control

law

uz = sgn(c3) if c3 6= 0 (5.6)

uz ∈ [−1, 1] if c3 = 0 (5.7)

uθ = sgn(c1y − c2x + c4) if c1y − c2x + c4 6= 0 (5.8)

uθ ∈ [−1, 1] if c1y − c2x + c4 = 0. (5.9)

If c3 = 0, then (5.6) implies that uz can have any value within [−1, 1]. In this case,

the following two propositions show that the projection of p(t) onto the (x, y, θ)-space is an

extremal for the Dubins car.

Proposition 5.1. If c3 = 0 and λ0 6= 0, then the projection of p(t) onto the (x, y, θ)-

space is an extremal for the Dubins car, i.e a trajectory of the Dubins car that satisfies the

Pontryagin Maximum Principle.

Proof. Since c3 = 0 and H = λ0 6= 0, the vector (λ1, λ2, λ4) is nonzero. Hence, the

projection of p(t) onto (x, y, θ)-space satisfies the Pontryagin Maximum Principle. Thus, it

has to be an extremal for the Dubins car.

Proposition 5.2. If both c3 = 0 and λ0 = 0, then p(t) has zero duration.

Proof. In this case, conditions (5.4) and (5.3) imply that λ1 cos θ+λ2 sin θ+ |λ4| ≡ 0. Thus,

the projection of p(t) onto the (x, y, θ)-space is an abnormal extremal for the Dubins car.
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Abnormal extremals for the Dubins car have zero duration.

If c3 6= 0, then the duration of p(t) is |zg| in which zg is the final altitude, because

uz ≡ 1 or −1, depending on the sign of c3, by (5.6). It is possible to have c1 = c2 = c4 = 0

because c3 6= 0. In that case, uθ can have any value within [−1, 1], by (5.6). This means

that the projection of p(t) onto the (x, y, θ)-space can be any feasible path for the Dubins

car. However, the length of such path must be |zg|. When does there exist a path of given

length for the Dubins car? We will study this question in the following section.

5.3 Paths With Given Length for the Dubins Car

We desire to plan a path for the Dubins car with prescribed length. Lemma 5.3 in [57]

proves that a short arc of circle (of radius 1) is isolated in the space of all admissible paths

for the Dubins car. Intuitively, there are no feasible trajectories for the Dubins car between

the end points of the arc with a length slightly more than the length of the arc. Whenever

there exists a desired path, we pick the one which minimizes a quadratic cost.

Equations of motion for the Dubins car are

ẋ = cos θ, (5.10)

ẏ = sin θ, (5.11)

θ̇ = u. (5.12)

Following [174], we pick the path that minimizes
∫ T
0 u2dt with given length for this

system. If there exists such path, it should satisfy the Pontryagin Maximum Principle. Let

the Hamiltonian F : R
3 × (R2 × S

1)× [−1, 1]→ R be

F (γ, (x, y, θ), u) = 〈γ, (cos θ, sin θ, u)〉+ γ0u
2 (5.13)

in which γ0 is a constant. For every desired path p(t) = (x(t), y(t), θ(t)) defined on [0, T ] and

associated with control u(t), there exists a constant γ0 ≤ 0 and an absolutely continuous

vector-valued adjoint function γ(t) = (γ1(t), γ2(t), γ3(t)), that is nonzero if γ0 = 0, with the
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following properties along p(t):

γ̇1 = −
∂F

∂x
, (5.14)

γ̇2 = −
∂F

∂y
, (5.15)

γ̇3 = −
∂F

∂θ
, (5.16)

F (γ(t), p(t), u(t)) = maxz∈[−1,1] F (γ(t), p(t), z), (5.17)

F (γ(t), p(t), u(t)) ≡ K, (5.18)

for some constant K. Regular and abnormal extremals, corresponding to γ0 6= 0 and γ0 = 0

respectively, are studied in the following two sections.

5.3.1 Regular Extremals

We may now scale F and assume γ0 = −1
2 . Rewriting the Hamiltonian we get F =

γ1 cos θ + γ2 sin θ + γ3u−
u2

2 . Maximization of F in (5.17) implies that

u =























−1 if γ3 < −1

γ3 if −1 ≤ γ3 ≤ 1

1 if γ3 > 1

. (5.19)

Equations (5.14), (5.15), and (5.16) can be solved for γ to obtain

γ(t) =













e1

e2

e1y − e2x + e3













, (5.20)

in which e1, e2, and e3 are constant. All ei’s cannot be zero, otherwise the extremal is a

straight line. Let ℓ : e1y−e2x+e3 = 0, ℓ+ : e1y−e2x+e3 = 1, and ℓ− : e1y−e2x+e3 = −1

be three lines in the plane. The control law (5.19) says that u = γ3 if the car is moving

between ℓ− and ℓ+. Otherwise, u = 1 or −1 depending on the position of the car with

respect to the lines. Figures 5.1 and 5.2 show a few examples of curves that satisfy such

control law. These paths are composed of turn with minimum radius, straight line segment,
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and elastica [85, 174].

5.3.2 Abnormal Extremals

Abnormal extremals correspond to γ0 = 0. If K = 0 in (5.18), then the extremal is of zero

duration. If K > 0, then the extremal is a time-extremal for the Dubins car. If K < 0, then

the extremal is also an extremal of the functional I(u) =
∫ T
0 −dt. We call such extremal

a locally longest curve, because it can be a local minimum of I(u), or equivalently a local

maximum of the length functional.

Further analysis of (5.17) leads to the following control law:

u = sgn(γ3) if γ3 6= 0, (5.21)

u ∈ [−1, 1] if γ3 = 0. (5.22)

Depending on the sign of K, there are two different sets of extremals: time-extremals

and locally longest curves.

K > 0, time-extremals

In this case, F = e1 cos θ + e2 sin θ + |e1y − e2x + e3| = K > 0. Moreover, all ei’s cannot

be zero. Thus, the extremal satisfies the Pontryagin Maximum Principle with the length

cost functional
∫ T
0 dt. Thus, it is composed of turn with minimum radius and straight line

segment. The extremal can tangentially join ℓ or diverge from ℓ. Figure 5.3 depicts two

examples of time-extremals.

K < 0, locally longest curves

The following constraint holds:

F = e1 cos θ + e2 sin θ + |e1y − e2x + e3| = K < 0. (5.23)

In this case, the extremal cannot tangentially join ℓ unless it violates the constraint.

Hence, either u ≡ 0 or u(t) = sgn(e1y(t)−e2x(t)+e3) and e1 cos θ+e2 sin θ+|e1y−e2x+e3| <
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(A)

ℓ

ℓ+

(B)

ℓ

ℓ+

ℓ−

(C)

ℓ
ℓ+

ℓ−

(D)

ℓ
ℓ−

ℓ+

Figure 5.1: Some examples of curves with prescribed length for the Dubins car; see also
Figure 5.2.
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(E)

ℓ

ℓ−

ℓ+

(F)

ℓ
ℓ−

ℓ+

(G)

ℓ+

ℓ

ℓ−

Figure 5.2: Continued from Figure 5.1.
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ℓ

ℓ

Figure 5.3: Two sample time-extremals for the Dubins car.

ℓ

Figure 5.4: Locally longest curves for the Dubins car.

0. More precisely, either the extremal completely lies on ℓ, or it is composed of consecutive

arcs of circle of length less than π. In Figure 5.4, the line ℓ and an example of a locally

longest curve is shown. Figure 5.5 shows an elongation from r(t), a Dubins shortest path,

to a locally longest curve.

5.4 Time-optimal Trajectories for the Airplane

Going back to our original quest, which was to find time-optimal paths for our airplane,

recall that the final altitude plays a major role. We distinguish three cases: low, medium,

and high goal altitude. In order to precisely define each case we give the following definition.

r(t)

p(t)

Figure 5.5: Elongation of a Dubins shortest path r(t) to a locally longest curve p(t).
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Definition 5.2. Let ∆ be the Dubins distance of (xg, yg, θg) from (0, 0, 0). More precisely,

let ∆ denote the duration, or equivalently the length, of the shortest Dubins curve from

(0, 0, 0) to (xg, yg, θg). We call the final altitude low if |zg| ≤ ∆, medium if ∆ < |zg| <

∆ + 2π, and high if |zg| ≥ ∆ + 2π.

5.4.1 Time-optimal Trajectories for Low Goal Altitude

As we mentioned before, following the shortest Dubins curve with an unsaturated altitude

velocity is a time-optimal strategy for low goal altitudes. This case corresponds to c3 = 0

in the Pontryagin Maximum Principle analysis in Section 5.2. Note that the duration of

such trajectory is ∆. It is obvious that there exists no trajectory transferring the system

faster from the initial configuration to the goal configuration.

Lemma 5.3. For a low goal altitude, a time-optimal trajectory for the system (2.8) consists

of the shortest Dubins curve with altitude velocity uz =
zg

∆
.

5.4.2 Time-optimal Trajectories for High Goal Altitude

If the goal altitude is high, the system has enough time to follow a helix once it reaches the

goal point in the plane and goal orientation. Hence, the shortest Dubins curve followed by

a helix all with saturated altitude velocity is a time-optimal strategy in this case. This case

corresponds to c3 6= 0 in Section 5.2. The duration of such trajectory is |zg|. There exists

no trajectory taking the system faster from the initial to the goal.

Lemma 5.4. For a high goal altitude, a time-optimal trajectory for the system (2.8) is

composed of two pieces. Along both pieces uz = sgn(zg). The projection of the first piece

onto the (x, y, θ)-space is the shortest Dubins curve for (xg, yg, θg). The second piece is a

helix. The control is uθ =
2π

|zg| −∆
along the second piece.

The system first traverses the shortest Dubins curve with saturated altitude velocity

along such time-optimal trajectory. It then traverses a helix, i.e. a full circle in the plane

with saturated altitude velocity.
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5.4.3 Time-optimal Trajectories for Medium Goal Altitude

If there is a path for the Dubins car from the initial configuration to the goal configuration in

time |zg|, then the time-optimal trajectory for the system corresponds to c3 6= 0 in Section

5.2. In this case, the altitude velocity is saturated. If there is no path for the Dubins car

from the initial configuration to the goal configuration in time |zg|, then the time-optimal

trajectory for the system must correspond to c3 = 0. The altitude velocity is not saturated

in this case. Thus, the projection of the time-optimal trajectory onto the (x, y, θ)-space is a

Dubins time-extremal. Dubins time-extremals are composed of turn with minimum radius

and straight line segments. We presented both cases in Section 5.3.

5.5 Summary

We introduced the Dubins airplane which extends the Dubins car with altitude. We gave

a characterization of the time-optimal trajectories for the Dubins airplane. For low and

high final altitudes, the time-optimal trajectories respectively consist of the Dubins curve

with unsaturated altitude velocity, and the Dubins curve followed by a helix with saturated

altitude velocity. For medium altitudes in between low and high, different cases were

recognized. The time-optimal trajectory is either a Dubins extremal (not the shortest)

with unsaturated altitude velocity or a Dubins path of certain length with saturated altitude

velocity. We gave a method to find a Dubins path with prescribed length if it exists. We

also gave an analysis of locally longest curves for the Dubins car, i.e. those paths that may

not be infinitesimally elongated. Numerical techniques can be used to compute the control

synthesis. Analytical solution for the control synthesis remains open for this problem.
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Chapter 6

Pareto-Optimal Coordination of

Two Translating Polygonal Robots

on a Roadmap

Collision-free coordination of multiple bodies is a fundamental problem that has received

significant attention over the last decades. We study the problem of planning optimal

motions of two polygonal robots, without differential constraints, under translation. Each

robot has a reference point that must lie on a given graph, called a roadmap, which is

embedded in the plane. The robots have a maximum speed and are capable of instantly

switching to any speed between zero and the maximum. Each robot wants to move from its

given initial location to its goal location without colliding with the other one. Equivalently,

we want to find an optimal path between two points in the coordination space which is

the Cartesian product of the roadmap, as a cell complex, with itself. Rather than impose

an a priori cost scalarization for choosing the best combined motion, we consider finding

motions whose cost vectors are Pareto-optimal. Pareto-optimal coordination strategies are

the ones for which there exists no strategy that would be better for both robots.

For clarity of presentation, we first consider the case where the underlying graphs are

trees. We present an algorithm that computes the complete set of Pareto-optimal coordina-

tion strategies in time O(mn2 log n), in which m is the number of paths in the roadmap, and

n is the number of coordination space vertices. Second, we present an algorithm that solves

the general case. Our algorithm computes an upper bound on the cost of each motion in any

Pareto-optimal coordination. Thus, only a finite number of homotopy classes of paths in the

coordination space need to be considered. In effect, the new algorithm applies the acyclic

algorithm to a finite portion of the universal cover of the roadmap. The algorithm com-

putes solutions in time O(25αm1+5αn2 log(m2αn)), in which m is the number of edges in the

roadmap, n is the number of coordination space obstacle vertices, and α = 1 + ⌈(5ℓ + r)/b⌉

where ℓ is total length of the roadmap and r is total length of coordination space obstacle
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boundary and b is the length of the shortest edge in the roadmap. This chapter was a joint

work with Steven M. LaValle and Jason M. O’Kane [46].

6.1 Related Work

Planning motions of multibody systems such as reconfigurable robots and Autonomous

Guided Vehicles (AGV) is an important problem and has been studied in various settings

over the last decades [42, 67, 93, 180]. Previous approaches to multiple-robot motion plan-

ning are often categorized as centralized or decoupled. A centralized approach typically

constructs a path in a composite configuration space, which is formed by the Cartesian

product of the configuration spaces of the individual robots (e.g., [10, 15, 155]). A decou-

pled approach typically generates paths for each robot independently, and then considers

the interactions between the robots (e.g., [5, 60, 136, 137, 138]). In [39, 130, 158], robot

paths are independently determined, and a coordination diagram is used to plan a collision-

free trajectory along the paths. In [104, 165], an independent roadmap is computed for

each robot, and coordination occurs on the Cartesian product of the roadmap path do-

mains. The suitability of one approach over the other is usually determined by the tradeoff

between computational complexity associated with a given problem, and the amount of

completeness that is lost. In some applications, such as the coordination of AGVs, the

roadmap might represent all allowable mobility for each robot.

In this chapter, we study the problem of planning optimal motions of two polygonal

robots traveling on a given roadmap. The robots have a maximum speed and are capable

of instantly switching to any speed between zero and the maximum. The initial and goal

locations are given for each robot; see Figure 6.1. The robots must be disjoint when

they travel, and as a result, there are tradeoffs between the robots’ completion times.

Equivalently, we want to find an optimal path between two points in the coordination space

which is the Cartesian product of the roadmap, as a cell complex, with itself. One approach

is to consider a scalar cost that combines the completion times. Minimizing the average time

robots take to reach their goals [81, 126], and minimizing the time that the last robot takes

have been studied before [162]. The problem with scalarization is that it eliminates many
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R1 R2

R1

R2

Figure 6.1: A sample coordination problem that can be solved by our methods. [left] The
initial configuration. [right] The goal configuration.

interesting coordination strategies, possibly even neglecting optimality for some robots [104].

Rather than impose an a priori scalarization for choosing the best combined motion, we

consider finding motions whose cost vectors (cost of robot 1, cost of robot 2) are Pareto-

optimal. A sample problem and its Pareto-optimal solutions are illustrated in Figures 6.2,

6.3. Pareto-optimal coordination strategies are the ones for which there exists no strategy

that would be better for both robots. The notion of Pareto optimality induces a partial

order on the space of coordinations. Pareto-optimal coordinations are the minimal elements

of the partial order. For a detailed introduction to Pareto optimality, see [152].

Optimal coordinations according to a scalar cost impose a predetermined preference

between the robots, whereas having all Pareto-optimal coordinations beforehand gives the

freedom to determine the preference at run-time. The approach can be considered as

filtering out all of the motion plans that are not worth considering and presenting the user

with a small set of the best alternatives. Within this framework, additional criteria, such as

priority or the amount of sacrifice one robot makes, can be applied to automatically select

a particular motion plan. If the same tasks are repeated and priorities change, then one

only needs to select an alternative minimal plan, as opposed to re-exploring the entire space

of motion strategies. It was shown that the number of Pareto-optimal coordinations for n

robots on any roadmap is finite [68]; therefore, it is plausible to seek all of them. Figure

6.2 shows a coordination problem on a roadmap with 7 edges and Figure 6.3 illustrates the

four Pareto-optimal solutions for the problem.

This work is inspired by previous approaches to multiple robot coordination. O’Donnell
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e4 e5 e6

e3

e0 e1 e2

R1

R2

e0 × e4 e2 × e4

e0 × e3 e2 × e3

e0 × e1 e2 × e1

(A) (B)

Figure 6.2: (A) A coordination problem on a roadmap with 7 edges. (B) A subset of G ×G
for this problem.

J

(8.9,14.8)

(9.3,14.3)

(14.4,13.7)

(15.1,8.7)

Figure 6.3: The four Pareto-optimal solutions for the problem in Figure 6.2.
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and Lozano-Pérez introduced coordination diagrams for planning motions of two robot

manipulators [130]. Alt and Godau used similar coordination spaces in a different context

to compute the Fréchet distance between two polygonal curves [7]. LaValle and Hutchinson

gave the first approach to Pareto-optimal coordination of multiple robots [104]. They

presented an approximation algorithm based on dynamic programming in the discretized

coordination space. Ghrist et al. gave a characterization of Pareto-optimal coordinations

of multiple robots using CAT(0) geometry [69]. They provided an algorithm to shorten a

given coordination to a homotopic, possibly Pareto-optimal one.

The coordination space in our case is a two dimensional non-positively curved (NPC)

metric space, with nontrivial fundamental group if the roadmap is cyclic. Note that it is

not necessarily a manifold. Using shortest path algorithms in the plane such as continuous

Dijkstra [79, 124] or visibility graph methods in the universal cover of the coordination space,

one can compute the shortest paths. However, those methods are not directly applicable in

our problem because the roadmap can be cyclic, and consequently the universal cover can

be unbounded. Moreover, an incremental exploration of the unbounded universal cover may

never stop, because there are multiple Pareto-optimal coordinations whose maximum length

is unknown beforehand. This is simply a fascinating kind of shortest path problem, because

the space is unbounded and there are multiple solutions. In addition, paths are partitioned

into equivalence classes by L∞ equivalence. Our algorithm constructs a bounded portion

of the universal cover in which the shortest path algorithm is applied. After the relevant

portion of the universal cover is constructed, the rest is similar to the acyclic case.

We give a brief formulation of the problem in Section 6.2. We fix a canonical form for

Pareto-optimal coordinations and translate the problem into a search for shortest paths

in the coordination space in Section 6.3. We give the algorithm for an acyclic roadmap

in Section 6.4. The acyclic algorithm computes the visibility graph, augments it with

some extra edges, and finds the shortest paths. We present the general algorithm steps in

Section 6.5: 1) compute an upper bound on the cost of each motion in any Pareto-optimal

coordination, 2) construct a finite portion of the universal cover of the coordination space,

and 3) apply the acyclic algorithm. Finally, Section 6.7 concludes the chapter and mentions
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Figure 6.4: Polygonal robots on a piecewise linear roadmap.

interesting open problems.

6.2 Problem Formulation

Let the robots, R1 and R2, be polygonal open sets embedded in the plane. They translate

along a roadmap G, which is an embedded graph in the plane1. Edges of G are piecewise-

linear segments. See Figure 6.4 for an example. The roadmap need not be connected, so

effectively each robot can have its own roadmap. Each edge of G is weighted by its Euclidean

length. In this way, G turns into a metric graph [30]. The robots have a maximum speed

and are capable of instantly switching to any speed between zero and the maximum. By

scaling the respective metric graphs, we assume without loss of generality that both robots

have unit maximum speed. Under this assumption, the distance function d(x, y) gives the

minimum amount of time that it takes Ri to go from x to y on G.

We are given an initial and a goal configuration qinit
i , qgoal

i ∈ G for each robot Ri. A

coordination is a continuous path in the coordination space G ×G, from qinit = (qinit
1 , qinit

2 )

to qgoal = (qgoal
1 , qgoal

2 ), that avoids collision between the robots and satisfies speed bounds.

Figure 6.5 illustrates a graph times a single edge. The coordination space has a similar

structure; it is composed of similar rectangular pieces glued together along their respective

boundaries. The obstacle region, denoted by O ⊂ G×G, is the set of configurations at which

1If we assume that G is locally embedded in the plane, in which case its edges may intersect, then our
algorithm correctly works and our results still hold. For the sake of clarity, we preferred to assume G is
embedded.
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Figure 6.5: A graph times a single edge.

R1 and R2 collide. Since the robots are polygonal and roadmap paths are piecewise-linear,

the obstacle region is a collection of polygonal, open connected components.

The vector-valued cost J = (J1, J2) separately measures the time that each robot takes

to reach its goal and stop. Let C be the set of all coordinations, i.e. all continuous paths

in G × G from qinit to qgoal. The cost J : C → [0,∞)2 induces a partial order on the set of

all coordinations C . Each minimal element in this partial order is called a Pareto-optimal

coordination. The problem is to find all Pareto-optimal coordinations for the two robots.

To specify J , define a metric d∞ in G ×G that gives the minimum amount of time that

R1 and R2 take to go from (x1, x2) to (y1, y2) ignoring collisions. It is naturally defined

by d∞ : ((x1, x2), (y1, y2)) 7→ max(d(x1, y1), d(x2, y2)), in which d is the metric that made

G into a metric graph. Let L∞ be the functional that gives the length of each continuous

path in G × G according to d∞. For each coordination γ = (γ1, γ2) : [0, 1] → G × G, let

ti = min{t ∈ [0, 1] : γi([t, 1]) = qgoal
i }. In that case, Ji(γ) = L∞(γ|[0,ti]) and J (γ) =

(J1(γ), J2(γ)).

6.3 Canonical Pareto-optimal Coordinations

Different paths that have the same end points can have equal L∞ lengths in the coordination

space. Consequently, there are different coordinations with equal cost J . In this section,

we fix a canonical form for equivalent Pareto-optimal coordinations based on Euclidean

shortest paths. The following proposition precisely presents our canonical form and proves

its existence.

Proposition 6.1. For every Pareto-optimal coordination, there is an equivalent coordina-
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tion that is composed of a finite sequence of Euclidean shortest segments between the vertices

of the obstacle region, qinit, qgoal, and in some cases (x, qgoal
2 ) or (qgoal

1 , x).

Proof sketch: We first choose Euclidean shortest paths as canonical form for L∞-shortest

paths in G × G\O. Note that a Euclidean shortest path is also L∞-shortest. An argument

similar to the one in [52], which is essentially based on shortening, shows Euclidean shortest

paths in G×G\O comprise Euclidean shortest segments between the vertices of the obstacle

region O and the two end points.

We now choose a canonical form for a Pareto-optimal coordination γ. If robot R1

reaches its goal first under γ, then the final segment of γ is (qgoal
1 , x) to (qgoal

1 , qgoal
2 ) for

some x ∈ G. In that case, let γ̃ be that part of γ that goes from qinit to (qgoal
1 , x). Likewise,

the final segment of γ is (x, qgoal
2 ) to (qgoal

1 , qgoal
2 ) if robot R2 reaches its goal first. In that

case, let γ̃ be that part of γ that goes from qinit to (x, qgoal
2 ). If both robots simultaneously

reach their goals, then let γ̃ = γ. It is obvious that γ̃ is an L∞-shortest path; otherwise,

γ cannot be Pareto-optimal. Given the canonical form for L∞-shortest paths, there is a

path equivalent to γ̃ that is composed of a finite sequence of Euclidean shortest segments

between the vertices of the obstacle region, qinit, and the final point of γ̃. Eventually, that

part of γ that is not in γ̃ can be made a Euclidean shortest path.

6.4 Algorithm for Acyclic Roadmap

In this section, we present an algorithm for the case in which G is acyclic. To present the

algorithm, we first define a single coordination cell, which is the coordination space of the

two robots on two fixed paths.

6.4.1 Coordination Cell

Since G, as a cell complex, consists of 0-dimensional and 1-dimensional cells, G×G is a cube-

complex. In fact, G × G consists of a number of 2-dimensional cells appropriately glued to

each other along their boundary edges and vertices. Each such 2D cell, D = er × es, in

which er, es ⊂ G, can be seen as the coordination space of the two robots on the paths er
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e0

e1

R1 R2

e0 × e1

Figure 6.6: A pair of path segments and their coordination cell.

and es. In particular, our coordination cell can be seen as [0, lr]× [0, ls], in which lk = l(ek)

is the length of ek.

Within each coordination cell, the obstacle region is the set of points corresponding to

positions in which the interiors ofR1 andR2 intersect. The free region is set of points not in

the obstacle region. In Figure 6.6, we see an example of a coordination cell and its obstacle

region. Notice that our coordination cell is similar to the coordination diagram of [158],

but since our robots are polygonal and our paths are piecewise-linear, the obstacle region

in our coordination cell is a collection of polygonal connected components. If we confine

our attention to a single coordination cell (as we will in Section 6.4.2), a coordination is

essentially a piecewise-smooth path from (0, 0) to (lr, ls) inside its free region.

To describe the algorithm, we first describe how to compute all Pareto-optimal coordi-

nations in the simpler case of a single coordination cell, then extend the algorithm to the

whole G × G which consists of a collection of such coordination cells.

6.4.2 Algorithm for Two Fixed Paths

In this section we describe how to compute all Pareto-optimal coordinations in a single

coordination cell, i.e. for the two robots on two fixed paths. As it is stated in Section 6.2,

the obstacle (or collision) region of our coordination cell consists of a collection of polygons.

Thus, we may use the terms vertex and edge of the obstacle region. To present the algorithm,

we give some statements about the properties of Pareto-optimal coordinations.

As a consequence of Proposition 6.1, it is sufficient to consider only canonical coordina-

tions, i.e. those coordinations that are composed of a sequence of linear segments between
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the vertices of obstacle region, initial and goal points, and in some cases a point on the

boundary of coordination cell. The next lemma explains relevant vertices on the boundary

of coordination cell.

Lemma 6.2. Suppose τ is a canonical Pareto-optimal coordination. Let (t1, t2) denote the

last vertex of τ that is not on the boundary, i.e. t1 6= lr and t2 6= ls. There are three cases:

(i) If J1(τ) < J2(τ), then the line segment (t1, t2) − (lr, t2 + lr − t1) is collision free;

furthermore, it is exactly a segment of τ .

(ii) If J1(τ) > J2(τ), then the line segment (t1, t2) − (t1 + ls − t2, ls) is collision free;

furthermore, it is exactly a segment of τ .

(iii) There is at most one canonical τ such that J1(τ) = J2(τ). It is the Euclidean shortest

path on the visibility graph of obstacle vertices and endpoints.

Proof. In the first two cases, if the line segment is not collision free, we can always find

another coordination which reduces both J1 and J2, contradicting the optimality of τ .

Furthermore, if the line segment is not part of τ , we can replace it in and find a better

coordination. In the third case, τ is the Euclidean shortest path from (0, 0) to (lr, ls) in the

interior of coordination cell.

Corollary 6.3. The number of Pareto-optimal coordinations of two polygonal robots on

two fixed paths is finite.

Note that in case (i) of Lemma 6.2, (lr, t2 + lr − t1) is simply the intersection of the

line x1 = lr and the line with unit slope through (t1, t2). Similar remarks can be made for

cases (ii) and (iii). Intuitively, we can think of shooting a ray at slope 1 from each obstacle

vertex (t1, t2) and stopping when that ray hits a point with either x1 = lr or x2 = ls,

corresponding respectively to R1 or R2 reaching its goal. Lemma 6.2 tells us that every

canonical Pareto-optimal coordination ends with such a unit-slope segment.

Now we are ready to present the algorithm in Figure 6.7. The function Obstacle-

Polygons computes the obstacle region polygons. The obstacle region is a collection of

polygons which can be computed by collision detection algorithm along each pair of linear
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CoordinateSingleCell(er, es,R1,R2)
P ← ObstaclePolygons(er, es,R1,R2)
V G← VisibilityGraph(P ∪ {(0, 0)})
Dijkstra(V G, (0, 0),L∞)

S ← ∅
for each vertex v = (x1, x2) of each polygon in P do

if lr − x1 < ls − x2 then

q ← (lr, x2 + lr − x1)
else

q ← (x1 + ls − x2, ls)
end if

if Free(P, v, q) and Free(P, q, (lr, ls)) then

S ← S ∪ {(ShortestPath((0, 0), v), q, (lr , ls))}
end if

end for

return PruneDominatedSolutions(S)

Figure 6.7: The basic algorithm for two fixed paths. The robots R1 and R2 move along er

and es respectively.

path segments. More precisely, we build the Minkowski sum of R2 on R1. The intersec-

tion points of the roadmap path segments with this polygon give the boundary of obstacle

region. The visibility graph of the vertices of obstacle region and endpoints is computed in

VisibilityGraph according to the well-known radial sweep algorithm, which was summa-

rized in Section 2.4. The function Free determines whether a line segment is contained in

the free region of the coordination cell. This can be performed by simple geometric tests.

The optimal path candidates described in Lemma 6.2 are computed by iterating over the

vertices of obstacle region. Lastly, the Pareto-optimal solutions are extracted from this set

of candidates by simple pairwise comparisons in PruneSolutions. Figure 6.8 shows the

visibility graph of a coordination cell, augmented with its full-speed completions, and the

two Pareto optimal coordinations extracted from this graph.

Theorem 6.4. The algorithm CoordinateSingleCell in Figure 6.7 correctly computes

all Pareto-optimal coordinations of the two robots on two fixed piecewise-linear paths.

107



e0 × e1 e0 × e1 e0 × e1

Figure 6.8: [left] The visibility graph of a coordination cell, augmented with its unit-slope
completions. [right] The two Pareto optimal coordinations extracted from this graph.

Proof. The result directly follows from Proposition 6.1 and Lemma 6.2.

If n denotes the number of obstacle vertices, then VisibilityGraph takes O(n2 log n)

time. Since each of the other steps can be done in O(n2) time, the time complexity of

CoordinateSingleCell is also O(n2 log n).

6.4.3 Acyclic Algorithm Presentation

In this section we extend the coordination cell algorithm in Figure 6.7 to the general case

of two robots on an acyclic roadmap G. The theory developed in [71] shows that if G is

acyclic, G × G with Euclidean metric is non-positively curved (NPC), and consequently it

has unique Euclidean geodesics. For detailed information on NPC spaces see [30]. This

result implies the following proposition.

Proposition 6.5. Assume G is an acyclic graph. Equip G × G with the Euclidean metric.

Between any two points x, y in the same connected component of G ×G there is exactly one

geodesic connecting x and y.

This property makes G × G similar to the plane, because geodesics in G × G play the

role of lines in plane. In fact, geodesics inside a coordination cell coincide with the usual

Euclidean lines.

Lemma 6.6. Assume τ is a canonical Pareto-optimal coordination. Let A = (x1, x2) be

the last vertex of τ such that x1 6= qgoal
1 and x2 6= qgoal

2 . Once again, there are three cases:
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(i) If J1(τ) < J2(τ), then the geodesic segment A to (qgoal
1 , y) with equal progression for

R1 and R2 is collision free; furthermore, it is exactly a segment of τ .

(ii) If J1(τ) > J2(τ), then the geodesic segment A to (y, qgoal
2 ) with equal progression for

R1 and R2 is collision free; furthermore, it is exactly a segment of τ .

(iii) There is at most one canonical τ such that J1(τ) = J2(τ). It is the Euclidean shortest

path on the generalized visibility graph of obstacle vertices and endpoints.

Proof. In the first two cases, if the geodesic segment is not collision free, we can always find

another coordination which reduces both J1 and J2, contradicting the optimality of τ . If

the geodesic segment is not part of τ , we can replace it in and find a better coordination. In

the third case, τ is the shortest path from qinit to qgoal according to the Euclidean metric.

Corollary 6.7. The number of Pareto-optimal coordinations for two polygonal robots on a

piecewise-linear acyclic roadmap is finite.

A generalization of this result is given in [68].

In CoordinateAcyclic in Figure 6.9, GenVisibilityGraph is a generalization of

visibility graph algorithm in Section 2.4. More precisely, we perform a radial sweep in

G × G. This can be done because the radial geodesics are unique. To sweep about vertex

v, sort all the obstacle vertices throughout the cell complex in their geodesic angle order.

We extend the standard radial sweep visibility graph algorithm by maintaining a separate

balanced binary tree for each 2-cell in G × G intersected by the sweep ray. Edges in each

tree remain ordered according to their distance from v. To check whether a geodesic is

collision free, we check collision for all the nearest edges given by our tree data structure in

those cells that are traversed by the geodesic. The remainder of the algorithm is essentially

unchanged from CoordinateSingleCell.

Theorem 6.8. The algorithm CoordinateAcyclic in Figure 6.9 correctly computes all

Pareto-optimal coordinations of the two robots on G from qinit to qgoal. Moreover, its total
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CoordinateAcyclic(G,R1,R2, q
init, qgoal)

P ← ∅
for each pair of edges ei, ej ⊂ G do

P ← P ∪ObstaclePolygons(ei, ej ,R1,R2)
end for

V G← GenVisibilityGraph(P ∪ {qinit})
Dijkstra(V G, qinit,L∞)

S ← ∅
for each vertex v = (x1, x2) of each polygon in P do

if d(x1, q
goal
1 ) < d(x2, q

goal
2 ) then

q ← (qgoal
1 , x2 + d(x1, q

goal
1 ))

else

q ← (x1 + d(x2, q
goal
2 ), qgoal

2 )
end if

if Free(P, v, q) and Free(P, q, qgoal) then

S ← S ∪ {(ShortestPath(qinit, v), q, qgoal)}
end if

end for

return PruneDominatedSolutions(S)

Figure 6.9: The algorithm for finding all Pareto-optimal coordinations of two robots on an
acyclic piecewise-linear roadmap.

complexity is O(mn2 log n), in which m is the number of edges in G, and n is the number

of obstacle vertices.

Proof. Correctness directly follows from Proposition 6.1 and Lemma 6.6. Since each geodesic

passes through at most 2m cells, in computing the visibility graph, we perform O(mn2)

balanced binary tree operations, each taking O(log n) time. The visibility graph therefore

requires O(mn2 log n) time to compute. Both Dijkstra’s algorithm and the pruning of S

take O(n2) time. Finally, notice that the number of Pareto-optimal coordinations is at most

n + 2. Thus, the complexity of algorithm output is O(n). Hence, the total complexity of

our algorithm is O(mn2 log n).
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6.5 Algorithm for Cyclic Roadmap

To find canonical Pareto-optimal coordinations for the cyclic case, our algorithm computes

Euclidean shortest segments between obstacle vertices, initial and goal configurations, and

some points (qgoal
1 , x) and (x, qgoal

2 ) in the coordination space. The points (qgoal
1 , x) and

(x, qgoal
2 ) that need to be considered are characterized in Lemma 6.6. A point (qgoal

1 , x) or

(x, qgoal
2 ) needs to be considered if there is a collision-free Euclidean shortest segment, with

equal progression for R1 and R2, from an obstacle vertex or qinit to the point (qgoal
1 , x)

or (x, qgoal
2 ). To find the shortest path between two points, we enumerate all homotopy

classes and find the shortest path in every class. Fixing the end points in the coordination

space, there is only one shortest path in every homotopy class, which holds because the

space is non-positively curved [68]. To compute these paths, our algorithm partially builds

the universal cover of G × G, and finds the shortest path in the universal cover. Using a

cost upper bound computed in advance, our algorithm constructs the relevant part of the

universal cover. The rest of the algorithm is essentially identical to the acyclic case applied

to the universal cover.

6.5.1 Coordination Cost Upper Bound

In a scalar minimization problem, the cost of any feasible solution is an upper bound for

the cost of an optimal solution. The key idea here is the same. An upper bound for the

cost of any Pareto-optimal coordination can be derived from an arbitrary coordination.

The following lemma precisely derives an upper bound on the cost of every motion in any

Pareto-optimal coordination.

Lemma 6.9. Let ∆1,∆2 ⊆ G be such that {qgoal
1 }×∆2 = {qgoal

1 }×G\O, and ∆1×{q
goal
2 } =

G × {qgoal
2 }\O. Let δi be the diameter of ∆i as a metric graph. Let λ be the Euclidean

length of an arbitrary coordination γ. Let τ be a Pareto-optimal coordination. In that case,

J1(τ), J2(τ) ≤ λ + δ, in which δ = max(δ1, δ2).

Proof. We claim that either J1(τ) ≤ λ or J2(τ) ≤ λ. Suppose on the contrary, J1(τ) >

λ ≥ J1(γ) and J2(τ) > λ ≥ J2(γ). In that case, γ is a better coordination than τ . That is
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contradictory to Pareto-optimality of τ . Suppose that J1(τ) ≤ λ and R1 reaches its goal

first. Once R1 stops at its goal, robot R2 needs to travel along a roadmap path whose

length is at most the diameter of the free portion of the roadmap. The free portion of the

roadmap is ∆2. Hence, J2(τ) ≤ J1(τ) + δ2 ≤ λ + δ2 because the travel time for both R1

and R2 is J1(τ) up to the moment R1 stops, and is at most δ2 for R2 afterwards. Thus,

J1(τ), J2(τ) ≤ λ + δ2.

Similarly, J1(τ), J2(τ) ≤ λ + δ1 if J2(τ) ≤ λ and R2 reaches its goal first. Therefore,

J1(τ), J2(τ) ≤ λ + δ, in which δ = max(δ1, δ2).

To compute λ, which is the Euclidean length of an arbitrary coordination γ, we use the

dimension reduction method of Aronov et al. [11]. Denote the boundary of obstacle region

by ∂O. Define

Υ1 = {qinit
1 } × G\O, (6.1)

Υ2 = G × {qinit
2 }\O, (6.2)

Υ3 = {qgoal
1 } × G\O, (6.3)

Υ4 = G × {qgoal
2 }\O, (6.4)

and

Σ = ∂O ∪ (

4
⋃

j=1

Υj). (6.5)

We call Σ the skeleton of G × G\O. See Figure 6.10 for a simple example. Note that the

skeleton is a one-dimensional object. It is composed of five pieces: R1 at its initial, R2 at

its initial, R1 at its goal, R2 at its goal, and R1 touching R2. The following lemma follows

from Lemma 1 in [11].

Lemma 6.10 ([11]). There is a collision-free path from qinit to qgoal in the coordination

space if and only if there is a path from qinit to qgoal in Σ, the skeleton of G × G\O.

Our algorithm constructs Σ by gluing ∂O and Υj along their intersection points. We

discussed how to compute the obstacle region in Section 6.4.2. To compute Υj, first

we compute M = R1 ⊖ R2, the Minkowski difference. By intersecting polygon M po-
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e0 × e1

Σ

Figure 6.10: A sample problem, a subset of its coordination space, and the skeleton of the
depicted part.

sitioned respectively at qinit
1 and qgoal

1 with G, we compute Γ2 = G\({qinit
1 } ⊕ M) and

∆2 = G\({qgoal
1 } ⊕M). By intersecting −M positioned respectively at qinit

2 and qgoal
2 with

G, we compute Γ1 = G\({qinit
2 } ⊖M) and ∆1 = G\({qgoal

2 } ⊖M). It is enough to observe

that Υ1 = {qinit
1 } × Γ2, Υ2 = Γ1 × {q

init
2 }, Υ3 = {qgoal

1 } × ∆2, and Υ4 = ∆1 × {q
goal
2 }.

Dijkstra’s algorithm yields γ and the minimum distance of qgoal from qinit in Σ which is λ.

Finally, the diameter, or an overestimate of the diameter, of ∆i yields δi. Recall that the

upper bound is λ + max(δ1, δ2).

6.5.2 Universal Cover of G × G

Given the upper bound computed in Section 6.5.1, we only need to consider a finite portion

of the universal cover. Here we describe an algorithm to construct it. Let X be the universal

cover of G as a cell complex. In that case, X × X is the universal cover of G × G, and it is

enough to build the relevant part of X to construct the relevant part of X × X .

Since X is composed of disjoint copies of a fundamental domain glued along identified

vertices, we describe how to build a fundamental domain, denoted by X0. Let T be any

spanning tree of G (a collection of trees if G is not connected). Let ei = (ui, vi), i = 1, . . . , k

be those edges of G that are not in T . Obtain X0, the fundamental domain of X , by adding

k new vertices u∗
i and k edges (vi, u

∗
i ) to T . Note that the length of (vi, u

∗
i ) is the same

as that of (ui, vi). Cycles of G are opened into paths in X0. Vertices u∗
i must be identified

with ui in neighboring copies of the fundamental domain. We call ui and u∗
i gluing spots of

X0, because X is obtained by iteratively gluing disjoint copies of the fundamental domain
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u1 v1

G

(A)

u1 v1
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u∗
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u1 v1 u∗
1

u1 v1

X

Figure 6.11: (A) 2-cycle roadmap G. (B) an arbitrary spanning tree of G. (C) the funda-
mental domain of the universal cover of G. (D) the universal cover of G.
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u∗
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X × X

Figure 6.12: The coordination space of the 2-cycle roadmap, in Figure 6.11, and its universal
cover. [up] The coordination space G × G which is a flat torus. [down] The universal cover
of the coordination space.
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to X0 such that ui ∈ X0 is identified with u∗
i in one copy and u∗

i ∈ X0 is identified with ui

in another copy. See Figure 6.11 for a simple example.

Our algorithm builds X0 first, and initializes Y = X0. It inserts ui and u∗
i onto a list.

For every vertex in the list, the algorithm generates a copy of X0 and glues it to Y along

the relevant vertex. It then inserts the gluing spots of the newly generated copy in the list.

It iterates over these steps until Y covers the relevant part of X . For that purpose, the

distance between the vertex and the initial copy of X0 is computed at each iteration. If

that distance is more than the upper bound, then the vertex is neglected and no copies of

X0 is glued. Eventually, the algorithm stops when there are no more vertices in the list.

6.5.3 Applying The Acyclic Algorithm

We showed how to compute Y, the relevant portion of the universal cover of G, in Section

6.5.2. Note that Y ⊂ X is contractible. Therefore, it is acyclic and we may now apply our

acyclic Pareto-optimal coordination algorithm to it. The acyclic algorithm computes the

visibility graph in Y × Y among obstacle vertices and the initial and goal configurations,

augments it with some extra edges, and finds the shortest paths. Obstacles are computed

once in G × G, and they are copied multiple times to obtain obstacles in Y × Y. There are

several copies of qgoal in Y×Y all of which need to be considered in the visibility graph. Any

collision-free path from qinit to any qgoal copy is a coordination. Consequently, there are

several copies of visibility graph points (x, qgoal
2 ) and (qgoal

1 , x) that need to be considered.

6.5.4 Complexity Analysis

Let m denote the number of edges in G and let n denote total number of obstacle vertices

in G × G. Let ℓ be the total length of G and r the total length of obstacle boundary. Let b

denote the length of the shortest edge in G. Define α = 1 + ⌈(5ℓ + r)/b⌉.

Theorem 6.11. The time complexity of our cyclic algorithm is O(25αm1+5αn2 log(m2αn)).

Proof. We claim that the upper bound in Section 6.5.1 is not more than 5ℓ+r. Total length

of Σ is at most 4ℓ + r. Since λ is the length of a path in Σ, λ ≤ 4ℓ + r. Also, δi are not

more than the total length of the roadmap, so δ ≤ ℓ. Therefore, λ + δ ≤ 5ℓ + r.
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Figure 6.13: (A) A coordination problem on the star graph S16. (B) A subset of G × G for
this problem.

Every copy of the fundamental domain contributes at least b to the distance of a gluing

spot from the initial copy of X0. Since X0 has no more than 2m gluing spots, at most (2m)α

copies of X0 are used in the construction of Y. Therefore, Y has at most 2αm1+α edges.

The number of obstacle vertices in Y × Y is at most (2m)2αn.

Theorem 6.8 proves that the complexity of the acyclic algorithm is O(mn2 log n). Since

the last step in this algorithm is the acyclic algorithm applied to Y, which has at most

2αm1+α edges and (2m)2αn obstacle vertices, the last step, which is the dominating step,

takes

O(25αm1+5αn2 log(m2αn)) time.

6.6 Examples

Figure 6.2 showed an example coordination problem on a connected roadmap with 7 edges.

Each robot is shown in its initial state, and the goal is for the robots to switch places.

For this problem G × G contains 31 obstacle polygons totalling 174 obstacle vertices. The

complete set of 4 Pareto-optimal coordinations was illustrated in Figure 6.3.

As a second example, consider the star graph Sn with vertex set {v0, . . . , vn−1} and edge

set {(v0, vi) : 1 ≤ i < n}. Coordination on this family of graphs is unusual because every

cell of G × G has a non-empty obstacle region. In Figure 6.13, R1 and R2 navigate on an
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Figure 6.14: The two Pareto-optimal solutions for the problem in Figure 6.13.

embedding of S16. The obstacle region has 225 obstacles with 933 vertices in total. The

two Pareto-optimal solutions are shown in Figure 6.14.

6.7 Summary

We presented an algorithm to compute all Pareto-optimal coordinations of two polygonal

robots on a network of piecewise-linear paths in the plane. The robots have a maximum

speed and are capable of instantly switching to any speed bounded by the maximum speed.

The key insight was an upper bound on the cost of each motion in a Pareto-optimal coor-

dination. For an acyclic roadmap, our algorithm computes the generalized visibility graph,

augments it with unit-slope edges, and computes the shortest paths. In the cyclic case, the

algorithm applies the acyclic algorithm to a finite portion of the universal cover of the co-

ordination space. We gave the time complexity of the algorithm in Sections 6.4.3 and 6.5.4.

It remains open to find an optimal algorithm for this problem in terms of both geometric

and combinatorial characteristics of the roadmap.

This method can be applied to find all Pareto-optimal coordinations, provided the con-

figuration space of each robot is G, all paths in G × G are allowed, and the obstacle regions

in G × G are polygonal. In cases where the obstacle regions are not polygonal, but we can

compute bitangents and the generalized visibility graph, our algorithm is slightly modified

to compute all Pareto-optimal coordinations of such robots. For instance, one can consider

computing bitangents of the obstacle region in G × G for car-like mobile robots on a net-

work of SA paths [158]. The generalized visibility graph can then be computed and our

algorithm be applied.

For three robots translating on a metric graph G, the coordination space G ×G ×G is a
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three dimensional cube complex. Finding Pareto-optimal coordinations in this case reduces

to finding shortest paths in G ×G × G. It is known that the shortest path problem in R
3 is

NP-hard [36]. An open question is whether special cylindrical structure of the obstacles in

that case can be exploited to give efficient exact or approximation algorithms.
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Chapter 7

Conclusion

We conclude this dissertation by a summary of our main results, open problems, and future

directions.

7.1 Summary of Results

First, we characterized minimum wheel-rotation trajectories for the differential drive in the

absence of obstacles in Chapter 3. In Section 2.2.1, we proved that minimum wheel-rotation

trajectories for the differential drive exist. Therefore, it was viable to apply the Pontryagin

Maximum Principle as a necessary condition [141]. By applying the Pontryagin Maximum

Principle and developing geometric arguments, we derived necessary optimality conditions

which helped to rule out non-optimal trajectories. The remaining trajectories form 28

different maximally optimal trajectories, which are listed in Table 3.1. Minimum wheel-

rotation trajectories are composed of three motion primitives: rotation in place, straight

line, and swing segments (one wheel stationary and the other rolling). A complete list of

words that describe all of 52 minimum wheel-rotation trajectories was given in Table 3.2.

We also proved that minimum wheel-rotation for the differential drive is equal to minimum

time for the Reeds-Shepp car. Moreover, minimum wheel-rotation paths for the differential

drive are exactly minimum time paths for the convexified Reeds-Shepp car. Based on the

characterization of minimum wheel-rotation trajectories, a method to further determine

the applicable trajectory for every pair of initial and goal configurations was presented in

Section 3.7.

Second, we presented a method to compute minimum wheel-rotation trajectories among

convex obstacles in Chapter 4. Among obstacles, a minimum wheel-rotation trajectory is
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composed of a finite number of segments, each of which is either in the interior of the free

configuration space or on the boundary of obstacle region. Those segments that are in

the interior of the free region were characterized in Chapter 3. A constrained Pontryagin

Maximum Principle with our problem-specific arguments helped us to characterize bound-

ary segments in Section 4.2. We used the Pontryagin Jump Condition [141] to rule out

non-optimal intersections between free and boundary segments. Those results helped us to

introduce a nonholonomic bitangency graph to which the search for the minimum wheel-

rotation path is confined. In general, our nonholonomic bitangency graph is a 2-dimensional

subset of the 3-dimensional configuration space of the robot. Therefore, a continuous search

may be required to answer queries. In cases where the graph is 1-dimensional and can be

computed, any graph search algorithm, such as Dijkstra’s algorithm, is employed to extract

the solution.

Third, we introduced Dubins airplane which extends the Dubins car with altitude. We

gave a characterization of the time-optimal trajectories for the Dubins airplane in Chapter

5. For low and high final altitudes, the time-optimal trajectories respectively consist of

the Dubins curve with unsaturated altitude velocity, and the Dubins curve followed by

a helix with saturated altitude velocity. For medium altitudes in between low and high,

different cases were recognized. The time-optimal trajectory is either a Dubins extremal

(not the shortest) with unsaturated altitude velocity or a Dubins path of certain length

with saturated altitude velocity. We gave a method to find a Dubins path with prescribed

length if it exists. We also gave an analysis of locally longest curves for the Dubins car, i.e.

those paths that may not be infinitesimally elongated. The control synthesis is computed

numerically.

Fourth, in Chapter 6, we presented an algorithm to compute all Pareto-optimal coor-

dinations of two polygonal robots on a network of piecewise-linear paths in the plane. The

robots have a maximum speed and are capable of instantly switching to any speed bounded

by the maximum speed. The problem was translated to a shortest path problem by fixing

a canonical form, based on Euclidean shortest paths, for Pareto-optimal coordinations. For

an acyclic roadmap, our algorithm computes the generalized visibility graph, augments it
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with unit-slope edges, and computes the shortest paths in O(mn2 log n) time, in which m

is the number of paths in the roadmap, and n is the number of coordination space vertices.

In the cyclic case, our algorithm first computes an upper bound on the cost of each motion

in a Pareto-optimal coordination. It then applies the acyclic algorithm to a finite portion

of the universal cover of the coordination space. We gave the time complexity of the cyclic

algorithm in Section 6.5.4. It remains open to find an optimal algorithm for this problem

in terms of both geometric and combinatorial characteristics of the roadmap. This method

can be applied to find all Pareto-optimal coordinations, provided the configuration space of

each robot is the roadmap, all paths in the coordination space are allowed, and the obstacle

regions in the coordination space are polygonal. In cases where the obstacle regions are

not polygonal, but we can compute bitangents and the generalized visibility graph, our

algorithm is slightly modified to compute all Pareto-optimal coordinations of such robots.

7.2 Open Problems

• In spite of partial attempts [49, 160, 163], characterizing time-optimal paths for a

bounded velocity car with n trailers and a car with angular acceleration control still

remain long-standing open problems.

• Minimum wheel-rotation for the differential drive is equal to minimum time for the

Reeds-Shepp car. Moreover, minimum wheel-rotation paths for the differential drive

are exactly minimum time paths for the convexified Reeds-Shepp car. We needed com-

plicated optimal control tools to prove that fact which looks simple. It remains open

to investigate the case and understand why the two problems yield equal solutions.

• In general, our nonholonomic bitangency graph is infinite. In that case, a continuous

optimization is needed to compute minimum wheel-rotation trajectories among ob-

stacles. Further investigation and an efficient algorithm to compute minimum wheel-

rotation trajectories remain open.

• Analytical control synthesis for our Dubins airplane remains open.
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• For three robots translating on a metric graph G, the coordination space G × G × G

is a three dimensional cube complex. Finding Pareto-optimal coordinations in this

case reduces to finding shortest paths in G × G × G. It is known that the shortest

path problem in R
3 is NP-hard [36]. An open question is whether special cylindrical

structure of the obstacles in that case can be exploited to give efficient exact or

approximation algorithms.

7.3 Future Directions

There are a number of interesting directions to pursue as future work:

• Investigating different motion primitives for nonholonomic robots is an important area

of future work. Motion primitives are useful in general motion planning algorithms,

because they provide a set of local plans. For example, rotation in place and straight

motion is a sufficient set of primitives for the differential drive, but it does not give the

minimum wheel-rotation plan. For various applications and with different planners, it

is not clear which set of primitives yields a better motion plan in terms of the quality

and computation effort.

• Solving optimal control problems has proven to be challenging, and characterization of

the optimal solutions for every problem is a new piece of art. In practical applications,

numerical methods are used to solve the problem. Since existing numerical methods

have serious limitations, seeking an approximation framework in optimal control seems

to be a necessary quest. By an approximation framework we mean a theory that

can answer for example the following question: Given an error toleration bound ǫ,

what are the necessary and sufficient conditions for a given trajectory to have a cost

within ǫ distance of the optimal cost? How can we compute such trajectory? To the

best of our knowledge, existing optimal control approximation schemes are mainly

based on discretizing the solution. This is an approach mainly inspired by numerical

methods. However, our question is more general: how can we analytically characterize

approximately optimal trajectories?
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• Chattering or infinite control switchings within a finite time interval, also called Fuller

phenomenon, occurs in some practical problems such as time-optimal paths for a car

with angular acceleration control [163]. For future investigation, one approach is to

identify chattering pieces in an optimal trajectory and replace them with approx-

imately optimal pieces. Another approach is to constrain the number of control

discontinuities. One can also confine the class of controls to piecewise polynomial

functions.
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[164] Héctor Sussmann and Guoqing Tang. Shortest paths for the Reeds-Shepp car: A
worked out example of the use of geometric techniques in nonlinear optimal control.
Technical Report SYNCON 91-10, Dept. of Mathematics, Rutgers University, 1991.

[165] P. Svestka and M. H. Overmars. Coordinated motion planning for multiple car-like
robots using probabilistic roadmaps. In IEEE Int. Conf. Robot. & Autom., pages
1631–1636, 1995.

[166] H. G. Tanner, S. G. Loizou, and K. J. Kyriakopolous. Nonholonomic navigation
and control of cooperating mobile manipulators. IEEE Transactions on Robotics and
Automation, 19(1):53–64, 2003.

[167] S. Thomas, G. Song, and N. Amato. Protein folding by motion planning. Physical
Biology, 2:148–155, 2005.

135



[168] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic management:
A study in multiagent hybrid systems. IEEE Trans. on Automatic Control, 43(4),
1998.

[169] C. Urmson and R. Simmons. Approaches for heuristically biasing RRT growth. In
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2003.

[170] M. Vendittelli, J.P. Laumond, and C. Nissoux. Obstacle distance for car-like robots.
IEEE Transactions on Robotics and Automation, 15(4):678–691, 1999.

[171] M. Vendittelli, J.P. Laumond, and P. Souères. Shortest paths to obstacles for a
polygonal car-like robot. In IEEE Conf. Decision & Control, 1999.

[172] R. Volpe and P. Khosla. Manipulator control with superquadratic artificial poten-
tial functions: Theory and experiments. IEEE Transactions on Systems, Man, and
Cybernetics, 20(6):1423–1436, 1990.

[173] G. Walsh, A. Sarti, and S. Shankar Sastry. Algorithms for steering on the group of
rotations. Technical Report UCB/ERL M93/44, EECS Department, University of
California, Berkeley, 1993.

[174] G. C. Walsh, R. Montgomery, and S. Sastry. Optimal path planning on matrix Lie
groups. In IEEE Conf. Decision & Control, volume 2, pages 1258–1263, 1994.

[175] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic roadmap
planner with sampling on the medial axis of the free space. In Proceedings IEEE
International Conference on Robotics and Automation, pages 1024–1031, 1999.

[176] H. Wong, V. Kapila, and R. Vaidyanathan. UAV optimal path planning using c-c-c
class paths for target touring. In IEEE Conf. Decision & Control, pages 1105–1110,
2004.

[177] J. Yakey, S. M. LaValle, and L. E. Kavraki. Randomized path planning for link-
ages with closed kinematic chains. IEEE Transactions on Robotics and Automation,
17(6):951–958, December 2001.

[178] G. Yang and V. Kapila. Optimal path planning for unmanned air vehicles with
kinematic and tactical constraints. In IEEE Conf. Decision & Control, pages 1301–
1306, 2002.

[179] A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle. Dynamic-domain RRTs:
Efficient exploration by controlling the sampling domain. In Proceedings IEEE Inter-
national Conference on Robotics and Automation, 2005.

[180] M. Yim. Locomotion with a Unit-Modular Reconfigurable Robot. PhD thesis, Stanford
Univ., December 1994. Stanford Technical Report STAN-CS-94-1536.

[181] M.I. Zelikin and V.F. Borisov. Theory of Chattering Control. Birkhäuser, Boston,
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